找回密码
 欢迎注册
楼主: KeyTo9_Fans

[原创] 无限大的矩阵的幂运算

[复制链接]
发表于 2013-9-3 23:16:14 | 显示全部楼层
mathe 发表于 2013-9-3 21:25
2#的矩阵的特征值非常简单,直接可以用三角函数表示,而其特征多项式直接可以用切皮雪夫多项式表示。
如果 ...


受到mathe的启发,得到 $A_n$的特征多项式为  f(n,x) = x ChebyshevU[n,x/2-1]
  1. Table[{n+1,Expand[x ChebyshevU[n,x/2-1]]},{n,20}]
复制代码
展开算得:
  1. {2,-2 x+x^2}
  2. {3,3 x-4 x^2+x^3}
  3. {4,-4 x+10 x^2-6 x^3+x^4}
  4. {5,5 x-20 x^2+21 x^3-8 x^4+x^5}
  5. {6,-6 x+35 x^2-56 x^3+36 x^4-10 x^5+x^6}
  6. {7,7 x-56 x^2+126 x^3-120 x^4+55 x^5-12 x^6+x^7}
  7. {8,-8 x+84 x^2-252 x^3+330 x^4-220 x^5+78 x^6-14 x^7+x^8}
  8. {9,9 x-120 x^2+462 x^3-792 x^4+715 x^5-364 x^6+105 x^7-16 x^8+x^9}
  9. {10,-10 x+165 x^2-792 x^3+1716 x^4-2002 x^5+1365 x^6-560 x^7+136 x^8-18 x^9+x^10}
  10. {11,11 x-220 x^2+1287 x^3-3432 x^4+5005 x^5-4368 x^6+2380 x^7-816 x^8+171 x^9-20 x^10+x^11}
  11. {12,-12 x+286 x^2-2002 x^3+6435 x^4-11440 x^5+12376 x^6-8568 x^7+3876 x^8-1140 x^9+210 x^10-22 x^11+x^12}
  12. {13,13 x-364 x^2+3003 x^3-11440 x^4+24310 x^5-31824 x^6+27132 x^7-15504 x^8+5985 x^9-1540 x^10+253 x^11-24 x^12+x^13}
  13. {14,-14 x+455 x^2-4368 x^3+19448 x^4-48620 x^5+75582 x^6-77520 x^7+54264 x^8-26334 x^9+8855 x^10-2024 x^11+300 x^12-26 x^13+x^14}
  14. {15,15 x-560 x^2+6188 x^3-31824 x^4+92378 x^5-167960 x^6+203490 x^7-170544 x^8+100947 x^9-42504 x^10+12650 x^11-2600 x^12+351 x^13-28 x^14+x^15}
  15. {16,-16 x+680 x^2-8568 x^3+50388 x^4-167960 x^5+352716 x^6-497420 x^7+490314 x^8-346104 x^9+177100 x^10-65780 x^11+17550 x^12-3276 x^13+406 x^14-30 x^15+x^16}
  16. {17,17 x-816 x^2+11628 x^3-77520 x^4+293930 x^5-705432 x^6+1144066 x^7-1307504 x^8+1081575 x^9-657800 x^10+296010 x^11-98280 x^12+23751 x^13-4060 x^14+465 x^15-32 x^16+x^17}
  17. {18,-18 x+969 x^2-15504 x^3+116280 x^4-497420 x^5+1352078 x^6-2496144 x^7+3268760 x^8-3124550 x^9+2220075 x^10-1184040 x^11+475020 x^12-142506 x^13+31465 x^14-4960 x^15+528 x^16-34 x^17+x^18}
  18. {19,19 x-1140 x^2+20349 x^3-170544 x^4+817190 x^5-2496144 x^6+5200300 x^7-7726160 x^8+8436285 x^9-6906900 x^10+4292145 x^11-2035800 x^12+736281 x^13-201376 x^14+40920 x^15-5984 x^16+595 x^17-36 x^18+x^19}
  19. {20,-20 x+1330 x^2-26334 x^3+245157 x^4-1307504 x^5+4457400 x^6-10400600 x^7+17383860 x^8-21474180 x^9+20030010 x^10-14307150 x^11+7888725 x^12-3365856 x^13+1107568 x^14-278256 x^15+52360 x^16-7140 x^17+666 x^18-38 x^19+x^20}
  20. {21,21 x-1540 x^2+33649 x^3-346104 x^4+2042975 x^5-7726160 x^6+20058300 x^7-37442160 x^8+51895935 x^9-54627300 x^10+44352165 x^11-28048800 x^12+13884156 x^13-5379616 x^14+1623160 x^15-376992 x^16+66045 x^17-8436 x^18+741 x^19-40 x^20+x^21}
复制代码
于是最大的特征值 就是上面的方程的最大根了,算得的答案与7#完全吻合:
  1. Table[{n+1,N[Max[x/.Solve[ ChebyshevU[n,x/2-1]==0,x,Reals]],20]},{n,50}]//Column
复制代码
  1. {2,2.0000000000000000000}
  2. {3,3.0000000000000000000}
  3. {4,3.4142135623730950488}
  4. {5,3.6180339887498948482}
  5. {6,3.7320508075688772935}
  6. {7,3.8019377358048382525}
  7. {8,3.8477590650225735123}
  8. {9,3.8793852415718167681}
  9. {10,3.9021130325903071442}
  10. {11,3.9189859472289947798}
  11. {12,3.9318516525781365735}
  12. {13,3.9418836348521040543}
  13. {14,3.9498558243636472140}
  14. {15,3.9562952014676112759}
  15. {16,3.9615705608064608983}
  16. {17,3.9659461993678035566}
  17. {18,3.9696155060244161187}
  18. {19,3.9727226068054447472}
  19. {20,3.9753766811902754524}
  20. {21,3.9776616524502570901}
  21. {22,3.9796428837618654648}
  22. {23,3.9813718920726615047}
  23. {24,3.9828897227476208223}
  24. {25,3.9842294026289556621}
  25. {26,3.9854177481961079856}
  26. {27,3.9864767154838859771}
  27. {28,3.9874244197864851671}
  28. {29,3.9882759143087192179}
  29. {30,3.9890437907365466738}
  30. {31,3.9897386467837902926}
  31. {32,3.9903694533443937725}
  32. {33,3.9909438451461692095}
  33. {34,3.9914683525900690437}
  34. {35,3.9919485879904780592}
  35. {36,3.9923893961834910646}
  36. {37,3.9927949770850530033}
  37. {38,3.9931689860133396996}
  38. {39,3.9935146162684199712}
  39. {40,3.9938346674662559524}
  40. {41,3.9941316023674809243}
  41. {42,3.9944075943623602965}
  42. {43,3.9946645673271033456}
  43. {44,3.9949042292205070827}
  44. {45,3.9951281005196484952}
  45. {46,3.9953375383810783969}
  46. {47,3.9955337572463063191}
  47. {48,3.9957178464772070135}
  48. {49,3.9958907855006726840}
  49. {50,3.9960534568565431239}
  50. {51,3.9962066574740881563}
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-3 23:34:59 | 显示全部楼层
BeerRabbit 发表于 2013-9-3 18:44
第一个问题:
然后在OEIS上查到是Catalan数
Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!( ...


男人就要对自己狠一点:
  1. {50,3.9960534568565431239}
  2. {60,3.9972590695091477476}
  3. {70,3.9979861330826292947}
  4. {80,3.9984580724814458695}
  5. {90,3.9987816540381914600}
  6. {100,3.9990131207314631140}
  7. {110,3.9991843856563784593}
  8. {120,3.9993146499511145601}
  9. {130,3.9994160281603859286}
  10. {140,3.9994964698850131490}
  11. {150,3.9995613669496909692}
  12. {160,3.9996144809641297128}
  13. {170,3.9996585009161053690}
  14. {180,3.9996953903127824783}
  15. {190,3.9997266099849379237}
  16. {200,3.9997532649633211973}
  17. {210,3.9997762036205468175}
  18. {220,3.9997960860188666894}
  19. {230,3.9998134319290440441}
  20. {240,3.9998286551480140645}
  21. {250,3.9998420884076322405}
  22. {260,3.9998540017112214006}
  23. {270,3.9998646160075244864}
  24. {280,3.9998741135094011584}
  25. {290,3.9998826455662262783}
  26. {300,3.9998903387310242640}
  27. {310,3.9998972994804072432}
  28. {320,3.9999036179186560271}
  29. {330,3.9999093707083457582}
  30. {340,3.9999146234067356729}
  31. {350,3.9999194323417422078}
  32. {360,3.9999238461283425775}
  33. {370,3.9999279069020695454}
  34. {380,3.9999316513283492518}
  35. {390,3.9999351114330558248}
  36. {400,3.9999383152895794244}
  37. {410,3.9999412875900539800}
  38. {420,3.9999440501225395074}
  39. {430,3.9999466221714469016}
  40. {440,3.9999490208549983661}
  41. {450,3.9999512614107895862}
  42. {460,3.9999533574383788724}
  43. {470,3.9999553211061381169}
  44. {480,3.9999571633282584047}
  45. {490,3.9999588939167321053}
  46. {500,3.9999605217122742597}
  47. {600,3.9999725844948535854}
  48. {700,3.9999798579840103499}
  49. {800,3.9999845787629412180}
  50. {900,3.9999878153155807630}
  51. {1000,3.9999901304037163322}
  52. {1100,3.9999918433076921685}
  53. {1200,3.9999931461119694511}
  54. {1300,3.9999941600002379404}
  55. {1400,3.9999949644896634964}
  56. {1500,3.9999956135107585130}
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 00:24:36 | 显示全部楼层
wayne 发表于 2013-9-3 23:34
男人就要对自己狠一点:


可以再狠一点,按指数增长,
${2, 2}$
${4, 2+\sqrt2}$
${8, 2+\sqrt{2+\sqrt2}}$
${16, 2+\sqrt{ 2+\sqrt{2+\sqrt2}}}$
${32, 2+\sqrt{2+\sqrt{ 2+\sqrt{2+\sqrt2}}}}$
${64, 2+\sqrt{2+\sqrt{2+\sqrt{ 2+\sqrt{2+\sqrt2}}}}}$

点评

够狠!  发表于 2013-9-4 09:22

评分

参与人数 2威望 +3 金币 +3 贡献 +3 经验 +3 鲜花 +15 收起 理由
KeyTo9_Fans + 3 + 3 + 3 + 3 + 3 这是一组很有规律的式子,非常棒的发现!
wayne + 12 赞一个!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2013-9-4 09:03:18 | 显示全部楼层
根据mathe的提示,找到了$1$个三角函数来描述$A_n$的特征值:

当$n\geq 2$时,$A_n$的最大实特征值是$2+2\cos(\pi/n)$。

为什么会有这样的结论呢?

点评

漂亮啊!竟然直接给出答案了.  发表于 2013-9-4 09:22

评分

参与人数 1威望 +6 金币 +6 贡献 +6 经验 +6 鲜花 +6 收起 理由
wayne + 6 + 6 + 6 + 6 + 6 很给力!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 09:24:38 | 显示全部楼层
13#,14# 的结论 直接支持了7# 的 猜想。
即 最大的特征值的极限是4
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 15:13:13 | 显示全部楼层
昨天发13#的帖子时已经太晚,打算今天来解一下函数方程
$f(2n)=2+\sqrt{f(n)}, f(2)=2, f(3)=3$.
的,当时想到杨徽割圆术了,圆周率的一个连根号公式. 愣是没看出来就是余弦半角公式的变形。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 17:11:59 | 显示全部楼层
KeyTo9_Fans 发表于 2013-9-4 09:03
根据mathe的提示,找到了$1$个三角函数来描述$A_n$的特征值:

当$n\geq 2$时,$A_n$的最大实特征值是$2+ ...$


你们在讨论2#的矩阵了?
自然了,因为所有特征值是$2+2cos({k\pi}/{n+1})$
用切皮雪夫多项式的性质容易得出的

点评

我也是在说1#的矩阵. :)  发表于 2013-9-4 19:36
我在$14#$说的也是$1#$的矩阵。  发表于 2013-9-4 19:34
我在13#说的是1#的矩阵  发表于 2013-9-4 18:16
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 17:15:53 | 显示全部楼层
利用链接公式19可以得出其特征多项式是切皮雪夫多项式,利用链接公式(22)

可得出多项式所有根
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 17:21:29 | 显示全部楼层
KeyTo9_Fans 发表于 2013-9-4 09:03
根据mathe的提示,找到了$1$个三角函数来描述$A_n$的特征值:

当$n\geq 2$时,$A_n$的最大实特征值是$2+ ...

wayne 你都知道特征多项式是切比雪夫多项式了怎么还会不明白特征值会取什么值,$U_n(cos\theta)=\frac{sin(n+1)\theta}{sin\theta}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2013-9-4 19:55:26 | 显示全部楼层
Buffalo 发表于 2013-9-4 17:21
wayne 你都知道特征多项式是切比雪夫多项式了怎么还会不明白特征值会取什么值,$U_n(cos\theta)=\frac{sin(n+1)\theta}{sin\theta}$


多谢大神的关注和批评。
严格来说,特征多项式并不是 Chebyshev Polynomial ,而是 shifted  Chebyshev Polynomial 。

惭愧,毕业工作多年了。不仅一些东西日渐生疏,而且人也懒了(具体表现就是不能做 持续性的思考活动)。
mathe 提到切比雪夫多项式的时候,我立马点了链接,并看到了矩阵表达,即链接中的公式19.
然后立马写了个程序。在纸上也稍微笔画了一下,确定1# fans给的矩阵的特征多项式的表达式是x ChebyshevU[n,x/2-1]  无误之后,就立马收手了(因为我第二天早晨要六点半起床)。


现在看来,ChebyshevU 的一些基本性质,我都能无视,却贴出一堆没实际意义的运算结果。实在是说不过去了。

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-23 18:37 , Processed in 0.026862 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表