- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2014-8-25 22:44:37
|
显示全部楼层
对于四面体,Bortos用Gram矩阵定义了四面体各个顶点的空间角。
定义1: 设\(\overrightarrow{e_0},\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\)是顶点\(A_0,A_1,A_2,A_3\)所对的面上的单位法向量,则称
\[\alpha_i=\arcsin\Biggr|\det\Bigr[\frac{\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}}{\{\overrightarrow{e_i}\}}\Bigl]\Biggl|\]
为顶点\(A_i\)所对应的空间角,其中\(\det(\overrightarrow{e_0},\overrightarrow{e_1},\overrightarrow{e_2})\)表示由\(\overrightarrow{e_0},\overrightarrow{e_1},\overrightarrow{e_2}\)构成的Gram矩阵的行列式的值,即
\[\det(\overrightarrow{e_0},\overrightarrow{e_1},\overrightarrow{e_2})=\begin{vmatrix}
\overrightarrow{e_0}\*\overrightarrow{e_0}&\overrightarrow{e_0}\*\overrightarrow{e_1}&\overrightarrow{e_0}\*\overrightarrow{e_2}\\
\overrightarrow{e_1}\*\overrightarrow{e_0}&\overrightarrow{e_1}\*\overrightarrow{e_1}&\overrightarrow{e_1}\*\overrightarrow{e_2}\\
\overrightarrow{e_2}\*\overrightarrow{e_0}&\overrightarrow{e_2}\*\overrightarrow{e_1}&\overrightarrow{e_2}\*\overrightarrow{e_2}\\
\end{vmatrix}\]
正弦定理1:设\(S_i\)为四面体\(A_0 A_1 A_2 A_3\)的顶点\(A_i\) 所对面的面积,\(\alpha_i\) 为顶点\(A_i\) 所对应的空间角,\(V\)为四面体的体积,则
\[\frac{S_0}{\sin(\alpha_0)}=\frac{S_1}{\sin(\alpha_1)}=\frac{S_2}{\sin(\alpha_2)}=\frac{S_3}{\sin(\alpha_3)}=\frac{2S_0 S_1 S_2 S_3}{(3V)^2}\]
中国数学学者重新定义了顶点的空间角
定义2: 设\(O\)为四面体\(A_0 A_1 A_2 A_3\) 的外接球球心,令\(\alpha_{ij}=A_i O A_j (0\leqslant i,j \leqslant 3)\),则称\(\theta_k=\arcsin(\sqrt{-M_k})\)为顶点\(A_k\)所对应的顶点角,其中
\[ M_0=\begin{vmatrix}
0&1&1&1\\
1&0&-\frac{1}{2}\sin(\frac{\alpha_{12}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{13}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{21}}{2})^2&0&-\frac{1}{2}\sin(\frac{\alpha_{23}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{31}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{32}}{2})^2&0\\
\end{vmatrix}\]
\[ M_1=\begin{vmatrix}
0&1&1&1\\
1&0&-\frac{1}{2}\sin(\frac{\alpha_{02}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{03}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{20}}{2})^2&0&-\frac{1}{2}\sin(\frac{\alpha_{23}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{30}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{32}}{2})^2&0\\
\end{vmatrix}\]
\[ M_2=\begin{vmatrix}
0&1&1&1\\
1&0&-\frac{1}{2}\sin(\frac{\alpha_{01}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{03}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{10}}{2})^2&0&-\frac{1}{2}\sin(\frac{\alpha_{13}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{30}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{31}}{2})^2&0\\
\end{vmatrix}\]
\[ M_3=\begin{vmatrix}
0&1&1&1\\
1&0&-\frac{1}{2}\sin(\frac{\alpha_{01}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{02}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{10}}{2})^2&0&-\frac{1}{2}\sin(\frac{\alpha_{12}}{2})^2\\
1&-\frac{1}{2}\sin(\frac{\alpha_{20}}{2})^2&-\frac{1}{2}\sin(\frac{\alpha_{21}}{2})^2&0\\
\end{vmatrix}\]
正弦定理2: 设\(R\)为四面体\(A_0 A_1 A_2 A_3\) 的外接球半径,\(A_i\)所对面的面积为\(S_i\),顶点角为\(\theta_i\)
\[\frac{S_0}{\sin(\theta_0)}=\frac{S_1}{\sin(\theta_1)}=\frac{S_2}{\sin(\theta_2)}=\frac{S_3}{\sin(\theta_3)}=2R^2\] |
|