- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2015-8-10 19:58:17
|
显示全部楼层
对于特殊四面体: \(a=a_1,b=b_1,c=c_1\) 费马点即为四面体的外心.
对于一般的四面体,我可以求解楼上的方程算出费马点
例如: 取\(a=3,b=4,c=5,a_1=6,b_1=6,c_1=6\)
为了方便输入:记\(\cos(\alpha)=k_1,\cos(\beta)=k_2,\cos(\gamma)=k_3\)
\(-a^4a_1^4+2a^4a_1^2w^2+2a^4a_1^2x^2-a^4w^4+2a^4w^2x^2-a^4x^4+2a^2a_1^4y^2+2a^2a_1^4z^2+2a^2a_1^2b^2b_1^2-2a^2a_1^2b^2w^2-2a^2a_1^2b^2y^2-2a^2a_1^2b_1^2x^2-2a^2a_1^2b_1^2z^2+2a^2a_1^2c^2c_1^2-2a^2a_1^2c^2w^2-2a^2a_1^2c^2z^2-2a^2a_1^2c_1^2x^2-2a^2a_1^2c_1^2y^2+4a^2a_1^2w^2x^2-2a^2a_1^2w^2y^2-2a^2a_1^2w^2z^2-2a^2a_1^2x^2y^2-2a^2a_1^2x^2z^2+4a^2a_1^2y^2z^2-2a^2b^2b_1^2w^2-2a^2b^2b_1^2x^2+4a^2b^2c^2w^2+2a^2b^2w^4-2a^2b^2w^2x^2-2a^2b^2w^2y^2+2a^2b^2x^2y^2+4a^2b_1^2c_1^2x^2-2a^2b_1^2w^2x^2+2a^2b_1^2w^2z^2+2a^2b_1^2x^4-2a^2b_1^2x^2z^2-2a^2c^2c_1^2w^2-2a^2c^2c_1^2x^2+2a^2c^2w^4-2a^2c^2w^2x^2-2a^2c^2w^2z^2+2a^2c^2x^2z^2-2a^2c_1^2w^2x^2+2a^2c_1^2w^2y^2+2a^2c_1^2x^4-2a^2c_1^2x^2y^2-a_1^4y^4+2a_1^4y^2z^2-a_1^4z^4-2a_1^2b^2b_1^2y^2-2a_1^2b^2b_1^2z^2+4a_1^2b^2c_1^2y^2-2a_1^2b^2w^2y^2+2a_1^2b^2w^2z^2+2a_1^2b^2y^4-2a_1^2b^2y^2z^2+4a_1^2b_1^2c^2z^2+2a_1^2b_1^2x^2y^2-2a_1^2b_1^2x^2z^2-2a_1^2b_1^2y^2z^2+2a_1^2b_1^2z^4-2a_1^2c^2c_1^2y^2-2a_1^2c^2c_1^2z^2+2a_1^2c^2w^2y^2-2a_1^2c^2w^2z^2-2a_1^2c^2y^2z^2+2a_1^2c^2z^4-2a_1^2c_1^2x^2y^2+2a_1^2c_1^2x^2z^2+2a_1^2c_1^2y^4-2a_1^2c_1^2y^2z^2-b^4b_1^4+2b^4b_1^2w^2+2b^4b_1^2y^2-b^4w^4+2b^4w^2y^2-b^4y^4+2b^2b_1^4x^2+2b^2b_1^4z^2+2b^2b_1^2c^2c_1^2-2b^2b_1^2c^2w^2-2b^2b_1^2c^2z^2-2b^2b_1^2c_1^2x^2-2b^2b_1^2c_1^2y^2-2b^2b_1^2w^2x^2+4b^2b_1^2w^2y^2-2b^2b_1^2w^2z^2-2b^2b_1^2x^2y^2+4b^2b_1^2x^2z^2-2b^2b_1^2y^2z^2-2b^2c^2c_1^2w^2-2b^2c^2c_1^2y^2+2b^2c^2w^4-2b^2c^2w^2y^2-2b^2c^2w^2z^2+2b^2c^2y^2z^2+2b^2c_1^2w^2x^2-2b^2c_1^2w^2y^2-2b^2c_1^2x^2y^2+2b^2c_1^2y^4-b_1^4x^4+2b_1^4x^2z^2-b_1^4z^4-2b_1^2c^2c_1^2x^2-2b_1^2c^2c_1^2z^2+2b_1^2c^2w^2x^2-2b_1^2c^2w^2z^2-2b_1^2c^2x^2z^2+2b_1^2c^2z^4+2b_1^2c_1^2x^4-2b_1^2c_1^2x^2y^2-2b_1^2c_1^2x^2z^2+2b_1^2c_1^2y^2z^2-c^4c_1^4+2c^4c_1^2w^2+2c^4c_1^2z^2-c^4w^4+2c^4w^2z^2-c^4z^4+2c^2c_1^4x^2+2c^2c_1^4y^2-2c^2c_1^2w^2x^2-2c^2c_1^2w^2y^2+4c^2c_1^2w^2z^2+4c^2c_1^2x^2y^2-2c^2c_1^2x^2z^2-2c^2c_1^2y^2z^2-c_1^4x^4+2c_1^4x^2y^2-c_1^4y^4=0\)
\(-2k_1yz-a^2+y^2+z^2=0\)
\(-2k_1wx-a_1^2+w^2+x^2=0\)
\(-2k_2xz-b^2+x^2+z^2=0\)
\(-2k_2wy-b_1^2+w^2+y^2=0\)
\(-2k_3xy-c_1^2+x^2+y^2=0\)
\(-2k_3wz-c_1^2+w^2+z^2=0\)
代入得到:
\(576w^4-576w^2x^2-576w^2y^2+1215x^4+288x^2y^2-2142x^2z^2+2048y^4-3808y^2z^2+2975z^4-27072w^2-20736x^2-20736y^2+746496=0\)
\(-2k_1yz+y^2+z^2-9=0\)
\(-2k_1wx+w^2+x^2-36=0\)
\(-2k_2xz+x^2+z^2-16=0\)
\(-2k_2wy+w^2+y^2-36=0\)
\(-2k_3xy+x^2+y^2-25=0\)
\(-2k_3wz+w^2+z^2-36=0\)
求解得到:
\(k_1 = -0.08125763422, k_2 = -0.3028690928, k_3 = -0.6158732730, w = 4.838906457, x = 3.176057999, y = 2.372782500, z = 1.653020392,\alpha = 94.660858238723315798^{\circ}, \beta = 107.63000925585309530^{\circ},\delta = 128.01540128977782951^{\circ}\)
|
|