- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2019-1-26 17:48:31
|
显示全部楼层
经过长时间的探索及计算,终于得到了有关\(x,y,z,w\)单变量的代数方程:
次数为16,保存在TXT文件中有15M,现在计算过程及结果总结如下:
结论1:在四面体D-ABC中有一点P设\(PA=x,PB=y,PC=z,PD=w\),则
\(x^n+y^n+z^n+w^n\)取极值的条件为:
\(\frac{x^{n-1}}{\sin{A_0}}=\frac{y^{n-1}}{\sin{B_0}}=\frac{z^{n-1}}{\sin{C_0}}=\frac{w^{n-1}}{\sin{D_0}}\)
其中\(A_0,B_0,C_0,D_0\)分别为四面体\(P-BCD,P-ACD,P-ABD,P-ABC\)的顶点空间角
\(\sin{A_0}=\sqrt{1-\cos{\alpha_0}^2-\cos{\beta_1}^2-\cos{\gamma_1}^2+2\cos{\alpha_0}{\beta_1}{\gamma_1}}\)
\(\sin{B_0}=\sqrt{1-\cos{\alpha_1}^2-\cos{\beta_0}^2-\cos{\gamma_1}^2+2\cos{\alpha_1}{\beta_0}{\gamma_1}}\)
\(\sin{C_0}=\sqrt{1-\cos{\alpha_1}^2-\cos{\beta_1}^2-\cos{\gamma_0}^2+2\cos{\alpha_1}{\beta_1}{\gamma_0}}\)
\(\sin{D_0}=\sqrt{1-\cos{\alpha_0}^2-\cos{\beta_0}^2-\cos{\gamma_0}^2+2\cos{\alpha_0}{\beta_0}{\gamma_0}}\)
其中
\(\alpha_0=\angle BPC,\alpha_1=\angle APD,\beta_0=\angle APC,\beta_1=\angle BPD,\gamma_0=\angle APB,\gamma_1=\angle CPD\)
为了方便我们约定:\(\cos{\alpha_0}=m,\cos{\beta_0}=n,\cos{\gamma_0}=p\)
结论2:关于n=1时四面体D-ABC中费马点的问题即
\(x+y+z+w\)取极值的条件为:
\(\sin{A_0}=\sin{B_0}=\sin{C_0}=\sin{D_0}\)
即\(\alpha_0=\alpha_1,\beta_0=\beta_1,\gamma_0=\gamma_1\)
此时内点P\(x,y,z,w\)满足的约束方程: \(m+n+p+1=0\)
即:
\(y^2+z^2-a^2=2yzm\)
\(x^2+w^2-a1^2=2xwm\)
\(x^2+z^2-b^2=2xzn\)
\(y^2+w^2-b1^2=2ywn\)
\(x^2+y^2-c^2=2xyp\)
\(z^2+w^2-c1^2=2zwp\)
\(m+n+p+1=0\)
也可以化成下列方程组:
\((-a^2+y^2+z^2)xw-(-a1^2+w^2+x^2)yz=0\)
\((-b^2+x^2+z^2)yw-(-b1^2+w^2+y^2)xz=0\)
\((-c^2+x^2+y^2)zw-(-c1^2+w^2+z^2)xy=0\)
\((-a^2+y^2+z^2)x+(-b^2+x^2+z^2)y+(-c^2+x^2+y^2)z+2xyz=0\)
\((-a1^2+w^2+x^2)yz+(-b1^2+w^2+y^2)xz+(-c1^2+w^2+z^2)xy+2xyzw=0\)
以上方程组因不对称,经过近1个星期日夜不间断消元计算最终却因内存不足中断!!
通过反复思索,考虑空间角的定义及对称性,我们可以得到
\((-a^2+y^2+z^2)x+(-b^2+x^2+z^2)y+(-c^2+x^2+y^2)z+2xyz=0\)
\((-c1^2+w^2+z^2)y+(-b1^2+w^2+y^2)z+(-a^2+y^2+z^2)w+2yzw=0\)
\((-b1^2+w^2+y^2)x+(-a1^2+w^2+x^2)y+(-c^2+x^2+y^2)w+2xyw=0\)
\((-c1^2+w^2+z^2)x+(-a1^2+w^2+x^2)z+(-b^2+x^2+z^2)w+2xzw=0\)
以上方程组消元过程很快得到了结果!!
我给几个计算得到的结果:
\({a = 6, a1 = 8, b = 7, b1 = 10, c = 9, c1 = 11, m = 0.1405248549, n = -0.3114323364, p = -0.8290925185, w = 7.292002433, x = 4.470970219, y = 4.939026612, z = 4.170797268}\)
\({a = 6, a1 = 9, b = 7, b1 = 10, c = 10, c1 = 8, m = -0.05282713200, n = -0.3834540341, p = -0.5637188345, w = 6.540726076, x = 5.846264500, y = 5.461204845, z = 2.213194391}\)
\({a = 6, a1 = 9, b = 7, b1 = 10, c = 11, c1 = 5, m = -0.8632740175, n = -0.1689698674, p = 0.03224388450, w = 2.829162049, x = 6.443651215, y = 9.125308744, z = -4.032387350}\) 此解无效!
\({a = 6, a1 = 7, b = 8, b1 = 10, c = 9, c1 = 11, m = 0.2621092795, n = -0.4573814604, p = -0.8047278190, w = 6.678496951, x = 4.482146588, y = 4.990774641, z = 4.886307806}\)
\({a = 6, a1 = 9, b = 8, b1 = 7, c = 10, c1 = 11, m = -0.01408510133, n = 0.02273924854, p = -1.008654146, w = 6.146588896, x = 6.488144455, y = 3.492227650, z = 4.830029337}\)
\({a = 6, a1 = 9, b = 8, b1 = 10, c = 11, c1 = 7, m = 0.1027117933, n = -0.4953240922, p = -0.5149470870, w = 5.846451281, x = 6.902755076, y = 5.718354435, z = 1.876389951}\)
\({a = 6, a1 = 7, b = 9, b1 = 8, c = 10, c1 = 11, m =0 .2533576736, n = -0.2839459657, p = -0.9694117070, w = 5.655430780, x = 5.799670870, y = 4.275898905, z = 5.429628652}\)
\({a = 6, a1 = 7, b = 9, b1 = 8, c = 11, c1 = 10, m = 0.2522660493, n = -0.2845263382, p = -0.9677397110, w = 5.125016959, x = 6.233081163, y = 4.855319304, z = 4.956599685}\)
\({a = 8, a1 = 6, b = 9, b1 = 7, c = 10, c1 = 11, m = 0.1321925780, n = -0.1395888214, p = -0.9926037570, w = 4.141243296, x = 4.923489650, y = 5.095046950, z = 6.877891640}\)
\({a = 8, a1 = 6, b = 9, b1 = 7, c = 11, c1 = 10, m = 0.1365103938, n = -0.1362491840, p = -1.000261210, w = 3.483595101, x = 5.383775750, y = 5.615506312, z = 6.515811976}\)
\({a = 9, a1 = 6, b = 10, b1 = 7, c = 11, c1 = 8, m = 0.1194918729, n = -.3122928028, p = -0.6996563845, w = 1.846681557, x = 5.730853794, y = 6.199898236, z = 6.598403653}\)
另外给一个代数方程例子:
\(a = 4, a1 = 7, b = 5, b1 = 7, c = 6, c1 = 8, w = 5.80900791844013, x = 3.63561649601680, y = 2.81284104014185, z = 2.71146353336776\)
\(7342246912x^{12}-5549176949632x^{10}+1480426084849020x^8-165525804129759300x^6+7362076621084959375x^4-133362251200973025000x^2+815782152217032000000=0\)
\(10037248y^{12}-7910548480y^{10}+1808092648680y^8-113720578637715y^6+1834323625397520y^4-8298482327771328y^2+311146027315200=0\)
\(140521472z^{12}-97385655552z^{10}+20553096720720z^8-1265327133835675z^6+21392443001490000z^4-101787678636600000z^2+36888760832000000=0\)
\(35130368w^{12}-47717590912w^{10}+22589949024380w^8-4486158475703300w^6+382150984577361055w^4-14195249488593355952w^2+188983767435968913408=0\)
若我们利用重心坐标的方法计算,可以得到:
\(x^2=\beta c^2+\gamma b^2+\delta a1^2-T\)
\(y^2=\alpha c^2+\gamma a^2+\delta b1^2-T\)
\(z^2=\alpha b^2+\beta a^2+\delta c1^2-T\)
\(w^2=\alpha a1^2+\beta b1^2+\gamma c1^2-T\)
\(T=\alpha\beta c^2+\alpha\gamma b^2+\alpha\delta a1^2+\beta\gamma a^2+\beta\delta b1^2+\gamma\delta c1^2\)
\(\alpha=\frac{\frac{1}{x}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}}\)
\(\beta=\frac{\frac{1}{y}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}}\)
\(\gamma=\frac{\frac{1}{z}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}}\)
\(\delta=\frac{\frac{1}{w}}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{w}}\)
显然得到的式子并不简单!
我们可以推广到N维空间(单纯形几何)的费马点极值问题
其实极值条件主要取决于空间角的:
对于N=3(三维)
\[\begin{vmatrix}
1&\cos(\alpha)&\cos(\beta)\\
\cos(\alpha)&1&\cos(\gamma)\\
\cos(\beta)&\cos(\gamma)&1\\
\end{vmatrix}=\sin(A_0)^2\]
在正四面体中:
\(\cos(\alpha)=\cos(\beta)=\cos(\gamma)=-\frac{1}{3},\sin(A_0)^2=\frac{16}{27}\)
对于N=4(四维)
\[\begin{vmatrix}
1&\cos(\alpha)&\cos(\beta)&\cos(\gamma)\\
\cos(\alpha)&1&\cos(\gamma)&\cos(\delta)\\
\cos(\beta)&\cos(\gamma)&1&\cos(\alpha)\\
\cos(\gamma)&\cos(\delta)&\cos(\alpha)&1
\end{vmatrix}=\sin(A_0)^2\]
在四维超正四面体中:
\(\cos(\alpha)=\cos(\beta)=\cos(\gamma)=\cos(\delta)=-\frac{1}{4},\sin(A_0)^2=\frac{125}{256}\)
对于N=5(五维)
\[\begin{vmatrix}
1&\cos(\alpha)&\cos(\beta)&\cos(\gamma)&\cos(\delta)\\
\cos(\alpha)&1&\cos(\gamma)&\cos(\delta)&\cos(\mu)\\
\cos(\beta)&\cos(\gamma)&1&\cos(\mu)&\cos(\alpha)\\
\cos(\gamma)&\cos(\delta)&\cos(\mu)&1&\cos(\beta)\\
\cos(\delta)&\cos(\mu)&\cos(\alpha)&\cos(\beta)&1\\
\end{vmatrix}=\sin(A_0)^2\]
在五维超正四面体中:
\(\cos(\alpha)=\cos(\beta)=\cos(\gamma)=\cos(\delta)=\cos(\mu)=-\frac{1}{5},\sin(A_0)^2=\frac{1296}{3125}\)
|
|