- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2015-5-12 20:10:13
|
显示全部楼层
先求椭圆柱内液体的体积:
A.水平放置时
当 \(0 \leqslant h \lt a\)时
\(V_{10}=\frac{2bc}{a}((h-a)\sqrt{h(2a-h)}+a^2\arctan{(\frac{\sqrt{h(2a-h)}}{a-h})})\)
当 \(a\leqslant h \lt 2a\)时
\(V_{10}=\frac{2bc}{a}((a-h)\sqrt{h(2a-h)}+a^2(\pi-\arctan{(\frac{\sqrt{h(2a-h)}}{h-a})}))\)
B.当左右倾斜放置时:
记
\(k_1=\tan(\theta)\)
\(h_1=h+bk_1,h_2=h-bk_1\)
\(S_{10}=\frac{c}{a}((h-a)\sqrt{h(2a-h)}+a^2\arctan{(\frac{\sqrt{h(2a-h)}}{a-h})})\)
\(S_{11}=\frac{c}{a}((a-h)\sqrt{h(2a-h)}+a^2(\pi-\arctan{(\frac{\sqrt{h(2a-h)}}{h-a})}))\)
1.当 \(0 \leqslant k_1 \lt \frac{h-a}{b}\)时
\(V(h)=b(S_{10}(h_1)+S_{10}(h_2))\)
2.当 \( \frac{h-a}{b} \leqslant k_1 \leqslant \frac{h+a}{b}\)时
\(V(h)=b(S_{11}(h_1)+S_{10}(h_2))\)
3.当 \( \frac{h+a}{b} \leqslant k_1 \)时
\(V(h)=b(S_{11}(h_1)+S_{11}(h_2))\)
C.前后倾斜放置时
记:
\(k=\tan{\beta}\)
\(F_1(x)=ax-\frac{ax\sqrt{c^2-x^2}}{2c}-\frac{ac}{2}\arctan{(\frac{x}{\sqrt{c^2-x^2}})}\)
\(F_2(x)=2ab(\frac{x\sqrt{c^2-x^2}}{c}+c\arctan{(\frac{x}{\sqrt{c^2-x^2}})})\)
\(V_0(h)=\frac{(y_1+y_2)(x_1-x_2)}{2}=\frac{2a^2c(ha+c^2k^2)\sqrt{c^2k^2+2ah-h^2}}{(a^2+c^2k^2)^2}\)
\(y_1=\frac{a(ha+c^2k^2+ck\sqrt{2ha+c^2k^2-h^2})}{a^2+c^2k^2}\)
\(y_2=\frac{a(ha+c^2k^2-ck\sqrt{2ha+c^2k^2-h^2})}{a^2+c^2k^2}\)
\(x_1=\frac{c(kc(a-h)+a\sqrt{2ha+c^2k^2-h^2})}{a^2+c^2k^2}\)
\(x_2=\frac{c(kc(a-h)-a\sqrt{2ha+c^2k^2-h^2})}{a^2+c^2k^2}\)
1.当\(0 \leqslant h \lt a\),且 \(0 \leqslant k \lt \frac{a-h}{c}\) 时
\(V_{11}(h)=2b(V_0(h)-(F_1(x_1)-F_2(x_2)))\)
2.当\(0 \leqslant h \lt a\),且 \(\frac{a-h}{c} \leqslant k \) 时
\(V_{12}(h)=2b(V_0(h)-(F_1(x_1)-F_1(x_2))+(F_2(c)-F_2(x_1)))\)
3.当\(a \leqslant h \lt 2a\),且 \( 0 \lt k \leqslant \frac{h-a}{c}\) 时
\(V_{13}(h)=2b(V_0(h)-(F_1(x_1)-F_1(x_2))+(F_2(c)-F_2(x_1)))\)
4.当\(a \leqslant h \lt 2a\),且 \(\frac{a-h}{c} \leqslant k\) 时
\(V_{14}(h)=2b(V_0(h)-(F_1(x_1)-F_1(x_2))+(F_2(c)-F_2(x_1))+(F_2(x_2)-F_2(-c)))\)
|
|