- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2016-1-29 18:45:52
|
显示全部楼层
按照楼上38#的记号,我们可以算出:
我们先给出相关代号:
\(S_{D_1FZ}=S_{11},S_{E_1DX}=S_{12},S_{F_1EY}=S_{13},S_{D_1ZYEA}=T_{11},S_{E_1XZFB}=T_{12},S_{F_1YXDC}=T_{13}\)
\(S_{XYZ}=S_0,S_{ABC}=S,S_{AFZ}=S_{21},S_{BDX}=S_{22},S_{CEY}=S_{23},S_{AZYE}=T_{21},S_{BXZF}=T_{22},S_{CYXD}=T_{23}\)
经过复杂的计算,我们最终得到下列结论:
\(\frac{S_{11}}{S}=\frac{\lambda(\nu^2+\nu_1^2-2\nu_1\nu)}{(1+\nu)(1+\nu_1)(1+\nu-\lambda\nu_1+\lambda\mu_1\nu+\lambda\nu_1\mu_1\nu+\lambda\nu)}\)
\(\frac{S_{12}}{S}=\frac{\mu(\lambda-\lambda_1)^2}{(1+\lambda_1)(1+\lambda+\mu\lambda\nu_1+\mu\lambda-\mu\lambda_1+\mu\lambda_1\nu_1\lambda)(1+\lambda)}\)
\(\frac{S_{13}}{S}=\frac{\nu(\mu_1^2+\mu^2-2\mu\mu_1)}{(1+\mu)(1+\mu_1)(1+\mu\nu+\mu+\mu\lambda_1\nu\mu_1-\mu_1\nu+\lambda_1\nu\mu)}\)
\(\frac{S_0}{S}=\frac{(-2\mu^2\lambda\lambda_1\nu^2+\lambda^2\mu_1^2\nu^2+2\mu^2\nu_1\lambda\lambda_1\nu+2\mu_1\nu^2\nu_1\lambda\mu^2\lambda_1^2+\mu_1^2\nu^2\nu_1^2\lambda^2\mu^2\lambda_1^2+1-2\lambda^2\mu_1\nu^2\mu+2\mu^2\nu_1^2\lambda^2\lambda_1\mu_1\nu+2\nu_1\mu\lambda^2\mu_1\nu+2\mu\lambda_1\mu_1\nu\lambda\nu_1+2\mu\lambda_1\mu_1\nu^2\lambda+2\mu\lambda_1\mu_1^2\nu^2\lambda^2\nu_1+2\lambda_1\nu\mu+2\lambda\mu_1\nu+2\mu\lambda\nu_1-2\mu\lambda\nu-2\mu^2\nu_1\lambda^2\nu+\mu^2\nu_1^2\lambda^2-2\mu^2\lambda_1\mu_1\nu^2\nu_1\lambda^2+\nu^2\mu^2\lambda_1^2+\mu^2\lambda^2\nu^2)}{(1+\mu\nu+\mu+\mu\lambda_1\nu\mu_1-\mu_1\nu+\lambda_1\nu\mu)(1+\lambda+\mu\lambda\nu_1+\mu\lambda-\mu\lambda_1+\mu\lambda_1\nu_1\lambda)(1+\nu-\lambda\nu_1+\lambda\mu_1\nu+\lambda\nu_1\mu_1\nu+\lambda\nu)}\)
\(\frac{T_{11}}{S}=\frac{(\lambda\nu_1\nu-\nu_1^2\lambda_1\nu\mu^2\lambda-2\nu_1^2\mu\lambda+2\nu_1\nu^2\mu\lambda_1\mu_1\lambda+\nu+2\mu\nu+2\nu_1\nu\mu^2\lambda-\mu_1\nu+\nu_1\nu+2\nu_1\mu\nu-\nu_1\mu_1\nu-\lambda\mu_1^2\nu^2-\lambda\nu_1^2\mu^2+\nu^2\lambda_1\mu+\nu^2\lambda_1\mu^2-\lambda\mu^2\nu^2-\nu^2\mu_1\nu_1+\mu\nu^2\nu_1+\lambda\nu_1\mu_1\nu+2\nu_1\lambda\mu_1\nu^2\mu-2\nu_1\lambda\mu_1^2\nu^2+2\nu_1\lambda\mu_1\nu^2\lambda_1\mu^2+2\lambda\mu_1\nu^2\mu+2\lambda\nu_1^2\mu_1\nu-\lambda\nu_1^2\lambda_1\nu\mu_1\mu^2+\mu\nu^2\lambda\nu_1+\nu_1^2\lambda\mu_1\nu^2\mu+\nu_1^2\lambda\mu_1\nu^2\lambda_1\mu+\nu_1^2\lambda\mu_1\nu^2\lambda_1\mu^2+\lambda\nu_1^2\mu_1\nu\mu+\nu^2\lambda_1\mu^2\nu_1-\lambda\nu_1^2\lambda_1\nu\mu_1\mu-\nu_1^2\lambda\mu_1^2\nu^2+\lambda\nu^2\lambda_1\mu\nu_1-\lambda\nu_1^2\lambda_1\nu\mu-\lambda\nu\nu_1^2\mu+\nu^2\lambda_1\mu\nu_1-\lambda\nu^2\mu_1\nu_1+2\lambda\nu\nu_1\mu+\nu^2\mu^2\lambda_1\nu_1\lambda-\nu^2\mu_1+\mu\nu^2-\lambda\nu_1^2)}{(1+\nu-\lambda\nu_1+\lambda\mu_1\nu+\lambda\nu_1\mu_1\nu+\lambda\nu)(1+\nu_1)(1+\mu\nu+\mu+\mu\lambda_1\nu\mu_1-\mu_1\nu+\lambda_1\nu\mu)(1+\mu)}\)
\(\frac{T_{12}}{S}=\frac{(\lambda-\lambda_1\nu_1\lambda+\nu^2\mu\lambda_1\mu_1\lambda^2+\lambda_1\lambda-2\lambda_1^2\mu\nu+2\lambda\nu-\lambda_1^2\lambda\mu\nu^2\mu_1+2\lambda^2\mu\lambda_1\nu_1\mu_1\nu-\lambda^2\nu_1-\mu\lambda^2\nu_1^2-\lambda^2\lambda_1\nu_1+\mu\lambda\lambda_1+\lambda^2\mu_1\nu+2\mu\lambda_1^2\nu_1\lambda+\lambda^2\nu^2\mu_1+2\lambda\lambda_1\nu-\mu\lambda^2\nu^2+2\mu\lambda\lambda_1\nu-\mu\lambda^2\lambda_1\nu_1+\mu\lambda^2\lambda_1\nu+\mu\lambda^2\lambda_1\mu_1\nu-\mu\lambda_1^2\lambda\nu_1\mu_1\nu-\mu\lambda_1^2\lambda\nu+\lambda^2\lambda_1\mu_1\nu-\mu\lambda_1^2\lambda\mu_1\nu+\lambda^2\lambda_1\nu-\mu\lambda_1^2\nu_1^2\lambda^2+2\mu\lambda_1\nu_1\lambda^2\nu-2\mu\lambda_1\nu_1^2\lambda^2-\mu\lambda_1^2\nu^2+\mu\lambda_1^2\nu_1\lambda^2\nu+\mu\lambda_1^2\nu_1\lambda\nu+\mu\lambda_1^2\nu_1\lambda^2\mu_1\nu+\mu\lambda_1\nu_1\lambda-\lambda\nu_1+2\mu\lambda^2\nu_1\nu+\lambda^2\lambda_1\nu^2\mu_1+2\mu\lambda^2\lambda_1\nu^2\nu_1\mu_1-\mu\lambda_1^2\nu^2\lambda\nu_1\mu_1+\mu\lambda^2\lambda_1^2\nu^2\nu_1\mu_1+2\lambda\nu^2\mu\lambda_1+\lambda^2\nu-\mu\lambda_1^2)}{((1+\nu)(1+\lambda+\mu\lambda\nu_1+\mu\lambda-\mu\lambda_1+\mu\lambda_1\nu_1\lambda)(1+\lambda_1)(1+\nu-\lambda\nu_1+\lambda\mu_1\nu+\lambda\nu_1\mu_1\nu+\lambda\nu))}\)
\(\frac{T_{13}}{S}=\frac{(2\mu^2\mu_1\lambda_1\nu_1\lambda\nu+2\mu\lambda^2\mu_1\nu+\mu+\mu\lambda_1\nu\mu_1-2\mu_1^2\lambda\nu+2\mu^2\lambda\lambda_1\nu+2\mu^2\lambda^2\nu_1\lambda_1\nu\mu_1+2\mu^2\lambda_1\lambda\mu_1\nu-2\lambda_1^2\mu^2\nu\mu_1-\mu^2\lambda_1^2\nu-\mu\lambda_1-\mu_1^2\nu+\lambda^2\mu^2\nu_1\mu_1\nu-\mu_1^2\mu\lambda^2\nu_1\nu-\lambda_1\mu_1\mu^2\nu-\lambda_1^2\mu_1^2\mu^2\nu+2\mu\lambda_1\mu_1^2\nu+\lambda\mu_1\mu^2+\mu_1\mu\nu+\mu^2\lambda^2\nu_1+2\mu\lambda+\lambda\mu_1\mu^2\nu-\mu\lambda^2\lambda_1\nu_1\mu_1^2\nu+\mu^2\lambda^2\nu_1\lambda_1\nu\mu_1^2+\mu_1\mu^2\lambda\nu_1-\mu\lambda\mu_1^2\nu+\lambda\mu_1^2\mu^2\lambda_1\nu+\mu_1\mu^2\lambda\nu_1\nu+\mu^2\lambda\nu_1\lambda_1\nu\mu_1^2-\mu\lambda\nu_1\mu_1^2\nu-\mu\lambda_1\lambda\nu_1\mu_1^2\nu+\mu_1\mu^2\lambda^2\nu_1-\lambda^2\mu_1^2\nu+2\lambda\mu_1\mu-\lambda_1\mu_1\mu^2+\lambda\mu_1^2\mu\lambda_1\nu+2\mu\lambda\mu_1\nu+\mu^2\lambda-\lambda_1\mu_1\mu-\mu^2\lambda^2\nu+\mu^2\lambda\nu_1-\mu^2\lambda_1+\mu\mu_1)}{((1+\lambda+\mu\lambda\nu_1+\mu\lambda-\mu\lambda_1+\mu\lambda_1\nu_1\lambda)\)(1+\lambda)(1+\mu_1)(1+\mu\nu+\mu+\mu\lambda_1\nu\mu_1-\mu_1\nu+\lambda_1\nu\mu))}
进一步我们在上面令\(\lambda_1=0,\nu_1=0,\mu_1=0\)可以得到:
\(\frac{S_{21}}{S}=\frac{S_{11}}{S}=\frac{\nu^2\lambda}{(1+\nu)(1+\nu+\lambda\nu)}\)
\(\frac{S_{22}}{S}=\frac{S_{12}}{S}=\frac{\mu\lambda^2}{(1+\lambda)(1+\lambda+\mu\lambda)}\)
\(\frac{S_{23}}{S}=\frac{S_{13}}{S}=\frac{\mu^2\nu}{(1+\mu)(1+\mu\nu+\mu)}\)
\(\frac{S_0}{S}=\frac{(1-2\mu\lambda\nu+\mu^2\lambda^2\nu^2)}{(1+\mu\nu+\mu)(1+\lambda+\mu\lambda)(1+\nu+\lambda\nu)}\)
\(\frac{T_{21}}{S}=\frac{T_{11}}{S}=\frac{(\nu+2\mu\nu-\lambda\mu^2\nu^2+\mu\nu^2)}{(1+\nu+\lambda\nu)(1+\mu\nu+\mu)(1+\mu)}\)
\(\frac{T_{22}}{S}=\frac{T_{12}}{S}=\frac{(\lambda+2\lambda\nu-\mu\lambda^2\nu^2+\lambda^2\nu)}{(1+\nu)(1+\lambda+\mu\lambda)(1+\nu+\lambda\nu)}\)
\(\frac{T_{23}}{S}=\frac{T_{13}}{S}=\frac{(\mu+2\mu\lambda+\mu^2\lambda-\mu^2\lambda^2\nu)}{(1+\lambda+\mu\lambda)(1+\lambda)(1+\mu\nu+\mu))}\)
A.若进一步要求\(S_{11}=S_{12}=S_{13}=S_0\)
我们得到:
\(1-\lambda\nu_1\nu^2\lambda_1^2\mu^2+\nu_1-\mu^2\lambda\lambda_1\nu^2-\nu^2\lambda\mu+\lambda\mu_1\nu^2+2\nu_1^2\lambda_1\nu\mu^2\lambda+2\mu\lambda_1\mu_1\nu\lambda\nu_1+\nu_1^2\mu\lambda+2\nu_1\nu\mu\lambda_1+2\nu_1\nu^2\mu\lambda_1\mu_1\lambda+\lambda\mu_1\nu+\nu_1\nu^2\lambda_1^2\mu^2+\nu_1^2\nu^2\mu^2\lambda_1^2\mu_1\lambda+2\lambda_1\nu\mu-2\mu\lambda\nu+\lambda\nu_1^2\mu\lambda_1-\lambda\nu+\nu^2\mu^2\lambda_1^2+2\mu\lambda\nu_1+\lambda\nu_1^2\mu^2\lambda_1^2\nu\mu_1+\lambda\nu_1-2\nu^2\mu^2\lambda_1\nu_1\lambda+\lambda\nu_1^2\lambda_1^2\nu\mu^2+\lambda\nu_1^2\mu^2\lambda_1-\lambda\nu^2\mu\lambda_1=0\)
\(1+\lambda_1-\mu\lambda^2\mu_1\nu+\lambda^2\mu_1^2\nu^2-\lambda^2\mu_1\nu^2\mu+\nu_1\mu\lambda^2+2\mu\lambda_1\mu_1\nu\lambda\nu_1-2\nu^2\mu\lambda_1\mu_1\lambda^2-\mu\lambda_1\mu_1^2\nu^2\lambda^2+2\lambda\mu_1\nu+2\lambda_1\nu\mu-2\mu\lambda\nu+\lambda_1^2\mu\nu+2\lambda_1\lambda\mu_1\nu+\lambda_1^2\lambda^2\mu\nu^2\mu_1^2\nu_1+2\lambda_1^2\lambda\mu\nu^2\mu_1+\lambda_1\lambda^2\mu_1^2\nu^2+2\lambda^2\mu\lambda_1\nu_1\mu_1\nu+\mu\lambda_1^2\nu^2\mu_1^2\lambda\nu_1+\mu\lambda_1^2\nu^2\mu_1^2\lambda+\mu\nu^2\lambda_1^2\mu_1+\mu\lambda_1^2\nu\mu_1+\mu\lambda_1+\mu\lambda\nu_1-\mu\lambda-\lambda^2\mu\nu=0\)
\(1+\nu\mu\lambda_1\mu_1^2\lambda^2\nu_1^2+\mu^2\mu_1^2\lambda_1\nu_1^2\lambda^2\nu+2\mu^2\mu_1\lambda_1\nu_1\lambda\nu+\nu\mu_1^2\lambda\nu_1+\nu\mu_1^2\mu\lambda^2\nu_1^2+\nu\lambda^2\mu_1^2\nu_1+\lambda_1\nu\mu^2-\mu^2\nu_1^2\lambda^2\mu_1\nu+\mu^2\nu_1^2\lambda^2+2\mu\lambda_1\mu_1\nu\lambda\nu_1-\mu\nu+2\lambda\mu_1\nu-\nu_1\nu\mu^2\lambda+\mu_1+\lambda_1\nu\mu+\mu_1\nu-2\mu\lambda\nu-\mu^2\nu_1\lambda^2\nu+\mu_1^2\lambda\nu+2\mu\lambda\nu_1-2\lambda^2\mu^2\nu_1\mu_1\nu+2\mu_1^2\mu\lambda^2\nu_1\nu-\mu^2\nu\lambda+2\mu\mu_1\lambda\nu_1+\mu^2\mu_1\lambda^2\nu_1^2=0\)
B.若进一步要求\(T_{11}=T_{12}=T_{13}\)
我们得到:
\(-\mu^2\mu_1\lambda_1\nu_1\lambda\nu-\mu^2\lambda^3\nu_1^3\lambda_1\nu\mu_1+2\nu\mu_1^2\mu\lambda^2\nu_1^2-3\lambda^2\nu_1\nu+4\mu\lambda^2\mu_1\nu-\lambda^2\nu_1^3\mu_1\nu\mu-\lambda^2\nu_1^3\mu_1\nu\mu\lambda_1-\mu\lambda^3\nu_1^2\lambda_1\nu-\lambda^2\nu_1^2\mu^2\lambda_1-3\lambda\nu_1\nu-2\lambda^3\nu_1\mu_1\nu-2\mu\lambda^3\nu_1\nu-2\lambda^2\nu_1^2\mu_1\nu+2\mu^2\nu_1^2\lambda^2\mu_1\nu+\mu-\mu^2\nu_1^2\lambda^2\lambda_1\mu_1\nu-2\nu_1\mu\lambda^2-\nu_1^2\lambda_1\nu\mu^2\lambda+\nu_1^3\mu^2\lambda^3\lambda_1\mu_1-\mu\lambda_1\mu_1\nu\lambda\nu_1+\lambda^2\nu_1^3\mu\mu_1+2\mu\lambda^3\nu_1^2\mu_1+\lambda^3\nu_1^3\mu\mu_1+\mu\nu_1-\nu-2\mu^2\lambda^3\nu_1^2\lambda_1\nu\mu_1+2\lambda^2\nu_1^2\mu_1+\lambda^3\nu_1^2\mu_1+\lambda\nu_1^2\mu_1-\mu\lambda_1\nu\mu_1-\lambda^2\nu_1^2\mu^2\lambda_1\mu_1-2\mu\lambda_1\lambda\mu_1\nu+\mu_1\mu^2\lambda\nu_1^2\nu-\mu\lambda_1\lambda\nu_1^2\mu_1^2\nu-\lambda_1\mu_1\mu^2\nu_1+\lambda^2\mu_1\mu\nu_1^2-\lambda_1\mu_1\mu\nu_1-\nu_1\nu-2\lambda\nu+2\lambda^2\mu\lambda_1\nu_1\mu_1\nu-2\lambda^2\nu_1^2\nu\mu+\nu_1^3\mu^2\lambda^2\lambda_1+\lambda^2\mu_1^2\mu^2\nu+\mu_1^2\mu^2\lambda^2\nu_1^3\nu-2\mu^2\lambda^2\nu_1^2\lambda_1\nu+\lambda\nu_1^2\mu^2+2\lambda^2\nu_1^2+2\mu^2\lambda^2\nu_1\lambda_1\nu\mu_1-2\mu^2\lambda_1\lambda\mu_1\nu-\mu\lambda_1-2\mu\lambda_1\nu_1^2\lambda^3\mu_1\nu+\mu_1^2\mu^2\lambda^3\nu_1^3\nu-4\mu\lambda^3\mu_1\nu\nu_1^2+\mu\lambda^2\nu_1^2+\mu\lambda\nu_1+4\lambda^2\mu^2\nu_1\mu_1\nu+\lambda^2\nu_1^3\mu\lambda_1+4\mu_1^2\mu\lambda^2\nu_1\nu-\lambda_1\mu_1\mu^2\nu+\lambda\mu_1\mu^2+\mu_1\mu\nu-\lambda^3\nu_1^3\mu_1\nu\mu-\lambda^3\nu_1^3\mu_1\nu\mu\lambda_1+\nu_1^3\mu^2\lambda^2\lambda_1\mu_1+2\mu\lambda+2\lambda^2\mu^2\mu_1\nu+\lambda\mu_1\mu^2\nu+2\mu_1\mu^2\lambda\nu_1+\mu\lambda\mu_1^2\nu-\lambda\mu_1^2\mu^2\lambda_1\nu-\mu\lambda_1\nu_1^2\lambda^2+2\mu_1\mu^2\lambda\nu_1\nu-2\mu^2\lambda\nu_1\lambda_1\nu\mu_1^2+2\mu\lambda\nu_1\mu_1^2\nu-2\mu\lambda_1\lambda\nu_1\mu_1^2\nu+2\lambda\mu_1\mu-\lambda_1\mu_1\mu^2+2\mu_1^2\mu\lambda^2\nu+\mu\lambda_1\nu_1\lambda-\lambda\mu_1^2\mu\lambda_1\nu+4\mu\lambda\mu_1\nu+3\mu\lambda\nu_1\mu_1\nu+3\mu_1^2\mu^2\lambda^2\nu_1^2\nu-\mu^2\nu_1^3\lambda^2\lambda_1\mu_1\nu+\mu_1\mu\nu\nu_1+\mu_1\mu^2\lambda\nu_1^2-\lambda^3\nu_1^2\mu_1\nu+\nu_1^3\mu^2\lambda^3\lambda_1-2\lambda^2\nu_1^2\nu\mu\lambda_1+\lambda^3\nu_1^3\mu\lambda_1\mu_1+3\lambda^2\mu_1^2\mu^2\nu_1\nu-2\lambda^2\mu_1\mu\nu_1+\nu\mu_1^2\lambda\nu_1^2\mu-\mu^2\lambda^3\nu_1^2\lambda_1\nu-4\lambda^2\nu_1\mu_1\nu-4\mu\lambda^2\nu_1\nu-\mu\lambda^3\nu_1^2\nu-2\lambda\nu_1\mu_1\nu-3\lambda^2\nu_1^2\mu_1\nu\mu-\lambda^2\nu_1^2\mu_1\nu\mu\lambda_1+\mu^2\lambda-\lambda_1\mu_1\mu+2\mu^2\lambda\nu_1-\mu^2\lambda_1-\mu\lambda_1\nu_1+\mu\mu_1\nu_1-\mu^2\lambda_1\nu_1-\mu^2\lambda_1\lambda\nu_1^2\mu_1^2\nu+\mu\mu_1\lambda\nu_1+\lambda^2\nu_1^3\mu-\lambda^3\nu_1\nu-\lambda\nu_1^2\mu_1\nu-\lambda\nu_1^2\lambda_1\nu\mu-\lambda\nu\nu_1^2\mu-2\lambda\nu\nu_1\mu-\nu_1\mu_1\nu\mu\lambda_1+2\mu\lambda^3\nu_1^2+\lambda^3\nu_1^3\mu+\mu\mu_1+\lambda_1\mu_1\mu\lambda\nu_1+\mu^2\lambda_1\lambda\nu_1+\lambda^3\nu_1^2+\lambda\nu_1^2+\mu^2\mu_1\lambda_1\nu_1\lambda+\lambda^3\nu_1^3\mu\lambda_1-\mu^2\mu_1\lambda_1\nu_1\nu+\lambda^2\nu_1^3\mu\lambda_1\mu_1-\mu\lambda_1\nu_1^2\lambda^2\mu_1-\lambda^2\nu+\mu_1^2\mu^2\lambda^3\nu_1\nu+2\mu_1^2\mu^2\lambda^3\nu_1^2\nu-4\mu\lambda^3\mu_1\nu\nu_1=0\)
\(-\lambda-\mu_1^3\nu^3\lambda+2\mu\lambda_1\mu_1^2\nu^3\lambda^2\nu_1-\mu_1^3\nu^3\lambda\nu_1+2\lambda\mu_1\nu^2+\mu+4\mu\lambda_1\mu_1\nu^3\lambda+\mu\lambda_1\mu_1^2\nu^2\lambda^2\nu_1+\lambda_1\nu_1\lambda-\mu\lambda_1^2\nu^3\mu_1^3\lambda^2-2\mu\lambda_1^2\nu^3\mu_1^2\lambda^2+\mu\lambda_1\mu_1\nu\lambda\nu_1-2\mu_1^2\nu^2-2\nu_1\nu^2\mu\lambda_1\mu_1\lambda-\lambda^2\lambda_1^2\nu^3\mu_1\mu-4\nu^2\mu\lambda_1\mu_1\lambda^2-2\mu\lambda_1\mu_1^2\nu^2\lambda^2-2\mu_1^2\nu^3\lambda-\mu_1^3\nu^2\lambda\nu_1+2\mu\nu-\lambda\mu_1\nu-2\lambda_1^2\lambda\mu\nu^2-2\nu^2\mu\lambda_1\lambda^2+2\mu\lambda_1\nu\mu_1-3\mu\lambda_1\lambda\mu_1\nu+\lambda^2\mu\lambda_1\nu_1\mu_1+\mu\mu_1^2\nu^3\lambda-\lambda^2\mu_1^3\nu^3\lambda_1\nu_1+\mu\lambda^2\lambda_1^2\nu_1\mu_1^2\nu+\mu\lambda_1^2\lambda\nu_1\mu_1^2\nu-\lambda\mu_1\mu\lambda_1+\mu\lambda^2\mu_1^2\nu^3\nu_1-\lambda_1\lambda+\mu\nu_1\mu_1^2\nu^3\lambda+2\mu\nu_1\mu_1^2\nu^3\lambda_1\lambda-\lambda_1\lambda\mu_1\nu-\lambda\mu_1^2\mu\lambda_1^2\nu-2\lambda\nu-4\lambda_1^2\lambda\mu\nu^2\mu_1+\lambda^2\mu\lambda_1\nu_1\mu_1\nu+2\mu_1^2\mu\lambda^2\nu_1\nu^2+2\mu\lambda_1\mu_1^2\nu^2+2\mu_1^2\mu\nu^2\lambda+2\mu\lambda_1\nu^3\mu_1-\lambda_1\mu_1^3\nu^2\lambda+\lambda^2\nu_1-\lambda^2\lambda_1^2\nu^2\mu-\lambda\mu_1^2\nu^2-2\mu\lambda_1^2\nu^2\mu_1^2\lambda-\lambda^2\lambda_1\nu\mu_1^2+2\mu\lambda_1\lambda\nu_1\nu+\lambda^2\lambda_1\nu_1-\mu\lambda\lambda_1-2\lambda^2\mu_1\nu-\mu_1^2\nu+\mu_1^2\mu\lambda^2\nu_1\nu-2\lambda\lambda_1\nu+\mu\lambda_1\mu_1^3\nu^2\lambda+\mu\lambda_1\mu_1^3\nu^2\lambda\nu_1+\mu\lambda_1\mu_1^2\nu+3\mu_1\mu\nu-4\mu\lambda\lambda_1\nu+\mu\lambda^2\lambda_1\nu_1-\mu\lambda^2\lambda_1\nu+\mu_1\mu\nu^3-\mu_1^2\nu^3\lambda_1-\lambda_1\lambda\mu_1-2\mu\lambda^2\lambda_1\mu_1\nu+2\mu\lambda_1^2\lambda\nu_1\mu_1\nu-\mu\lambda_1^2\lambda\nu-2\lambda^2\lambda_1\mu_1\nu-2\mu\lambda_1^2\lambda\mu_1\nu-\lambda^2\lambda_1\nu+\mu\lambda\mu_1^2\nu+2\mu\lambda_1\nu_1\lambda^2\nu+\mu\lambda\nu_1\mu_1^2\nu-\lambda^2\mu_1^2\nu+\mu\lambda_1^2\nu_1\lambda^2\nu+\mu\lambda_1^2\nu_1\lambda\nu+2\mu\lambda_1^2\nu_1\lambda^2\mu_1\nu+\mu_1\lambda\nu_1-\mu\lambda^2\lambda_1\mu_1^2\nu+\mu\lambda_1\nu_1\lambda-\lambda^2\mu_1^3\lambda_1\nu^2\nu_1-\lambda\mu_1+\mu_1\lambda^2\nu_1+2\mu\lambda\mu_1\nu-\mu_1^2\nu^3+2\mu_1\mu\nu^3\lambda-\mu_1^3\nu^3\lambda_1\lambda-2\mu_1^2\nu^3\lambda_1\lambda+\lambda\nu_1+2\mu_1^2\mu\nu^2\lambda\nu_1-\mu_1\lambda_1\nu_1\lambda\nu-\lambda^2\nu_1\mu_1\nu+\mu\lambda_1\mu_1^2\nu^3-\lambda_1\mu_1^3\nu^2\lambda\nu_1-2\mu\lambda^2\lambda_1\nu^2\nu_1\mu_1-\lambda\nu_1\mu_1\nu-\mu_1^3\nu^2\lambda+\mu\lambda_1\nu^3\mu_1^3\lambda^2\nu_1-\lambda^2\mu_1^3\mu\lambda_1^2\nu^2-3\lambda^2\mu_1^2\mu\lambda_1^2\nu^2+3\mu_1\mu\nu^2+\mu_1\lambda_1\nu_1\lambda+\mu_1^2\lambda_1\nu_1\lambda^2\nu^2+\mu\lambda_1\mu_1^3\nu^3\lambda+\mu\lambda_1\mu_1^3\nu^3\lambda\nu_1+4\mu\lambda_1\mu_1^2\nu^3\lambda-3\lambda_1^2\lambda^2\mu\nu^2\mu_1+\nu_1\lambda\mu_1^2\nu^2+4\lambda\mu_1\nu^2\mu+2\lambda_1\lambda\mu_1\nu^2-2\mu_1^2\nu^2\lambda_1-4\lambda\nu^2\mu\lambda_1+\mu\mu_1-\lambda^2\mu_1^3\nu^3\nu_1+\lambda_1\mu_1\mu\lambda\nu_1+\lambda^2\mu_1^2\nu^2\nu_1+\mu\nu^2-\lambda\mu_1^2\nu^2\lambda_1+4\mu\lambda_1\nu^2\mu_1-\mu_1^3\lambda^2\nu^2\nu_1-\lambda^2\nu+\lambda^2\lambda_1\nu_1\mu_1-\lambda_1\mu_1^2\nu+\mu_1^2\nu^2\lambda_1\lambda\nu_1-\mu_1^3\nu^3\lambda_1\lambda\nu_1+\mu\lambda_1\lambda^2\nu_1\mu_1^3\nu^2-\lambda^2\lambda_1\nu_1\mu_1\nu+3\mu\lambda_1\nu^2\mu_1^2\lambda+\mu\lambda_1\nu^2\mu_1^2\lambda\nu_1=0\)
C.若进一步要求\(S_{21}=S_{22}=S_{23}=S_0\)
我们得到:
\(1-\nu^2\lambda\mu-2\mu\lambda\nu-\lambda\nu=0\)
\(1-2\mu\lambda\nu-\mu\lambda-\lambda^2\mu\nu=0\)
\(1-\mu\nu-2\mu\lambda\nu-\mu^2\nu\lambda=0\)
D.若进一步要求\(T_{21}=T_{22}=T_{23}\)
我们得到:
\(\mu-\nu-2\lambda\nu+2\mu\lambda+\mu^2\lambda-\lambda^2\nu=0\)
\(-\lambda+\mu+2\mu\nu-2\lambda\nu+\mu\nu^2-\lambda^2\nu=0\)
E.若进一步要求\(\lambda=p, \mu=p, \nu=p, \lambda_1=q, \mu_1=q, \nu_1=q\)
我们得到:
\(T_{11}=T_{12}=T_{13}=\frac{(q^2p^2+p^2q-p^2+3pq+p-2q^2+1)p}{(1+p)(1+q)(1+p^2+p+q^2p^2-pq+p^2q)}\)
\(S_{11}=S_{12}=S_{13}=\frac{p(p-q)^2}{(1+p)(1+q)(1+p^2+p+q^2p^2-pq+p^2q)}\)
\(S_0=\frac{(pq-p+1)^2}{1+p^2+p+q^2p^2-pq+p^2q}\)
F.若进一步要求
1.\(\lambda=p, \mu=p, \nu=p, \lambda_1=q, \mu_1=q, \nu_1=q\)
2.\(S_{21}=S_{22}=S_{23}=S_0\)
3.\(T_{21}=T_{22}=T_{23}\)
我们得到:
\(p^3q^3-p^3q^2-p^3q+p^2q^3+q^2p^2+p^2q-p^2+q^2p+pq-p+1+q=0\)
|
|