- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2014-12-21 20:33:48
|
显示全部楼层
根据9#所提电子书:<Beyond the Quartic Equation>
我们可以得到:有关五次整系数方程
\(y^5+a[1]y^4+a[2]y^3+a[3]y^2+a[4]y+a[5]=0\)
可根式解的条件即预解式,下面六次方程有有理根
\(s^6+10js^5+(35j^2+10k)s^4+(60j^3+30jk+10l)s^3+(55j^4+30j^2k+50jl+25k^2)s^2+(26j^5+10j^3k+59j^2l+44jk^2+14kl)s+5j^6+20j^2k^2+20j^3l+20jkl+25l^2=0\)
其中:
\(j = -(500(-(2/25)a[1]a[3]+(3/100)a[2]^2+(1/5)a[4]))((1/5)a[1]a[5]-(2/25)a[2]a[4]+(3/100)a[3]^2)+125(-(3/25)a[1]a[4]+(1/50)a[2]a[3]+a[5])^2\)
\(k = (1000000(-(2/25)a[1]a[3]+(3/100)a[2]^2+(1/5)a[4]))((3(-(1/25)a[1]^2a[5]+(1/250)a[1]a[2]a[4]+(1/500)a[1]a[3]^2-(1/1000)a[2]^2a[3]+(1/10)a[2]a[5]-(1/50)a[3]a[4]))((1/50)a[1]a[3]a[5]-(1/125)a[1]a[4]^2-(1/100)a[2]^2a[5]+(1/250)a[2]a[3]a[4]-(1/1000)a[3]^3)-(-(1/50)a[1]a[2]a[5]+(1/250)a[1]a[3]a[4]+(1/500)a[2]^2a[4]-(1/1000)a[2]a[3]^2+(1/10)a[3]a[5]-(1/25)a[4]^2)^2)-(500000(-(3/25)a[1]a[4]+(1/50)a[2]a[3]+a[5]))((9(-(1/125)a[1]^2a[4]+(1/250)a[1]a[2]a[3]-(1/1000)a[2]^3+(1/50)a[2]a[4]-(1/100)a[3]^2))((1/50)a[1]a[3]a[5]-(1/125)a[1]a[4]^2-(1/100)a[2]^2a[5]+(1/250)a[2]a[3]a[4]-(1/1000)a[3]^3)-(-(1/25)a[1]^2a[5]+(1/250)a[1]a[2]a[4]+(1/500)a[1]a[3]^2-(1/1000)a[2]^2a[3]+(1/10)a[2]a[5]-(1/50)a[3]a[4])(-(1/50)a[1]a[2]a[5]+(1/250)a[1]a[3]a[4]+(1/500)a[2]^2a[4]-(1/1000)a[2]a[3]^2+(1/10)a[3]a[5]-(1/25)a[4]^2))+(1000000((1/5)a[1]a[5]-(2/25)a[2]a[4]+(3/100)a[3]^2))((3(-(1/50)a[1]a[2]a[5]+(1/250)a[1]a[3]a[4]+(1/500)a[2]^2a[4]-(1/1000)a[2]a[3]^2+(1/10)a[3]a[5]-(1/25)a[4]^2))(-(1/125)a[1]^2a[4]+(1/250)a[1]a[2]a[3]-(1/1000)a[2]^3+(1/50)a[2]a[4]-(1/100)a[3]^2)-(-(1/25)a[1]^2a[5]+(1/250)a[1]a[2]a[4]+(1/500)a[1]a[3]^2-(1/1000)a[2]^2a[3]+(1/10)a[2]a[5]-(1/50)a[3]a[4])^2)\)
\(l = -(8000000000/3((3(-(1/25)a[1]^2a[5]+(1/250)a[1]a[2]a[4]+(1/500)a[1]a[3]^2-(1/1000)a[2]^2a[3]+(1/10)a[2]a[5]-(1/50)a[3]a[4]))((1/50)a[1]a[3]a[5]-(1/125)a[1]a[4]^2-(1/100)a[2]^2a[5]+(1/250)a[2]a[3]a[4]-(1/1000)a[3]^3)-(-(1/50)a[1]a[2]a[5]+(1/250)a[1]a[3]a[4]+(1/500)a[2]^2a[4]-(1/1000)a[2]a[3]^2+(1/10)a[3]a[5]-(1/25)a[4]^2)^2))((3(-(1/50)a[1]a[2]a[5]+(1/250)a[1]a[3]a[4]+(1/500)a[2]^2a[4]-(1/1000)a[2]a[3]^2+(1/10)a[3]a[5]-(1/25)a[4]^2))(-(1/125)a[1]^2a[4]+(1/250)a[1]a[2]a[3]-(1/1000)a[2]^3+(1/50)a[2]a[4]-(1/100)a[3]^2)-(-(1/25)a[1]^2a[5]+(1/250)a[1]a[2]a[4]+(1/500)a[1]a[3]^2-(1/1000)a[2]^2a[3]+(1/10)a[2]a[5]-(1/50)a[3]a[4])^2)+(2000000000/3)((9(-(1/125)a[1]^2a[4]+(1/250)a[1]a[2]a[3]-(1/1000)a[2]^3+(1/50)a[2]a[4]-(1/100)a[3]^2))((1/50)a[1]a[3]a[5]-(1/125)a[1]a[4]^2-(1/100)a[2]^2a[5]+(1/250)a[2]a[3]a[4]-(1/1000)a[3]^3)-(-(1/25)a[1]^2a[5]+(1/250)a[1]a[2]a[4]+(1/500)a[1]a[3]^2-(1/1000)a[2]^2a[3]+(1/10)a[2]a[5]-(1/50)a[3]a[4])(-(1/50)a[1]a[2]a[5]+(1/250)a[1]a[3]a[4]+(1/500)a[2]^2a[4]-(1/1000)a[2]a[3]^2+(1/10)a[3]a[5]-(1/25)a[4]^2))^2\)
可以用以检验12#所有的方程,均存在根式解.
|
|