找回密码
 欢迎注册
楼主: medie2005

[讨论] 数字乘积

[复制链接]
发表于 2009-2-26 10:48:27 | 显示全部楼层
我就是不允许带0的,没有什么区别
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 10:50:37 | 显示全部楼层
呵呵,放个程序让它一直运行下去看看: *Main> let inc2 n=n+2 *Main> take 5 [c|c<-(iterate inc2 10000001),c `mod` 3/=0,c `mod` 5/=0,c `mod` 7/ =0,c `mod` 11/=0,c `mod` 13/=0,c `mod` 17/=0,c `mod` 19/=0,count c>=9]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 10:51:12 | 显示全部楼层
2 6 7 8 7 8 9 3 3 8 6 8 8 2 7 6 4 8 2 6 8 8 7 6 8 3 3 6 5 4 2 0 <-- 含 0 0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 10:54:04 | 显示全部楼层
呵呵,这里正好无论是否带0步数都相同,只是一个从20到0,一个从20到2
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 11:00:04 | 显示全部楼层
我们可以这样考虑。 每次先计算某个范围内需要一步变换的合数,并且对合数进行因子分解。如果它所有素因子都不超过7才保留,记为R1。 对R1中每个数分解成若干个不超过10的因子的乘积,然后将这些因子任意排列,可以得到一些新的数。同样如果这个数存在大于7的素因子就淘汰,记为R2. ...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 11:01:33 | 显示全部楼层
现在如果考虑0包含在定义里 像33#的数字算对 即4#在8之前都可以
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 11:05:54 | 显示全部楼层
*Main> take 5 [c|c<-(iterate inc2 10000001),c \`mod\` 3/=0,c \`mod\` 5/=0,c \`mod\` 7/ =0,c \`mod\` 11/=0,c \`mod\` 13/=0,c \`mod\` 17/=0,c \`mod\` 19/=0,count c>=9] [26888999,26889899,26898899,26899889,26988989]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 11:08:23 | 显示全部楼层
上面数字中26899889是第一个素数,即n=9的解
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 11:10:08 | 显示全部楼层
呵呵,这个数据也归到20去了 *Main> prodd 26899889 4478976 *Main> (prodd.prodd) 26899889 338688 *Main> (prodd.prodd.prodd) 26899889 27648 *Main> (prodd.prodd.prodd.prodd) 26899889 2688 *Main> (prodd.prodd.prodd.prodd.prodd) 26899889 768 *Main> (prodd.prodd.prodd.prodd.prodd.prodd) 26899889 336 *Main> (prodd.prodd.prodd.prodd.prodd.prodd.prodd) 26899889 54 *Main> (prodd.prodd.prodd.prodd.prodd.prodd.prodd.prodd) 26899889 20
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-2-26 11:11:18 | 显示全部楼层
从6开始到9,都落入2688 ... -> ... 20 -> 0
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-22 11:07 , Processed in 0.025463 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表