- 注册时间
- 2007-12-27
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 44425
- 在线时间
- 小时
|
发表于 2019-2-6 11:15:57
|
显示全部楼层
这个可以扩张到更多点也成立,数值计算可以验证
- innerprod(a,b)=
- {
- local(s);
- s=0;
- for(u=1,length(a),
- s+=a[u]*b[u]
- );
- s
- }
- perpvec(a,b)=
- {
- local(u);
- u=innerprod(b,b)-innerprod(a,b);
- u/=innerprod(a-b,a-b);
- u*a+(1-u)*b
- }
- perprotate(m)=
- {
- local(n,r);
- n=length(m[,1]);
- r=matrix(n,length(m[1,]));
- for(u=1,n-1,
- r[u,]=perpvec(m[u,],m[u+1,])
- );
- r[n,]=perpvec(m[n,],m[1,]);
- r
- }
- granm(n,m)=
- {
- local(r);
- r=matrix(n,m);
- for(u=1,n,
- for(v=1,m,
- r[u,v]=2*random(1.0)-1.0;
- )
- );
- r
- }
- plen(m)=
- {
- local(n,r);
- n=length(m[,1]);
- r=vector(n);
- for(u=1,n,
- r[u]=sqrt(innerprod(m[u,],m[u,]))
- );
- r
- }
- pangle(m)=
- {
- local(n,r,x);
- n=length(m[,1]);
- r=vector(n);
- x=plen(m);
- for(u=1,n-1,
- r[u]=innerprod(m[u,],m[u+1,])/(x[u]*x[u+1])
- );
- r[n]=innerprod(m[n,],m[1,])/(x[n]*x[1]);
- r
- }
复制代码
比如上面pari/gp代码,然后调用
(11:12) gp > m=granm(10,2);
(11:12) gp > h=m;
(11:12) gp > for(u=1,10,h=perprotate(h))
(11:12) gp > pangle(m)
%58 = [0.13094390757425572586897330693922760638, 0.27478457799382083099586956163919994750, -0.83403509336655614549647414732045555854, 0.59735297479132672647706922853304549911, -0.52632380321904226169862901627243144170, -0.80511734034786098563793583703215670988, -0.38438818934646934888818443410206486840, -0.99130533701336277684115213150606694557, 0.41861095048399809858695131599839686302, -0.066203186117102511991044546302214391115]
(11:13) gp > pangle(h)
%59 = [0.13094390757425572586897330693922760656, 0.27478457799382083099586956163919994285, -0.83403509336655614549647414732045555834, 0.59735297479132672647706922853304549645, -0.52632380321904226169862901627243144215, -0.80511734034786098563793583703215671111, -0.38438818934646934888818443410206487575, -0.99130533701336277684115213150606694557, 0.41861095048399809858695131599839686347, -0.066203186117102511991044546302214393602]
可以验证10个平面点也满足条件(取P为原点)。
但是如果扩展到三维就不成立了 |
|