- 注册时间
- 2008-11-26
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 149507
- 在线时间
- 小时
|
楼主 |
发表于 2020-4-21 09:17:39
|
显示全部楼层
- Clear["Global`*"];
- (*计算余弦值子函数,利用三边计算余弦值*)
- cs[a_,b_,c_]:=(a^2+b^2-c^2)/(2*a*b)
- ans=Solve[
- {
- (*计算两个角的余弦值*)
- c1==cs[x,5,4],
- c2==cs[x,5,3],
- (*同一个角的余弦值\正弦值的平方和等于1*)
- c1^2+s1^2==1,
- c2^2+s2^2==1,
- (*和差化积公式*)
- Cos[60Degree]==c1*c2-s1*s2
- },{x,c1,c2,s1,s2}
- ]//FullSimplify
复制代码
思路很简单,都放在注释里面了!
利用解方程的思想求解问题
\[\left\{\left\{x\to -\sqrt{25-12 \sqrt{3}},\text{c1}\to -\frac{1}{5} \sqrt{\frac{1}{193} \left(2581-336 \sqrt{3}\right)},\text{c2}\to -\frac{1}{10} \sqrt{\frac{1}{193} \left(756 \sqrt{3}+17401\right)},\text{s1}\to \frac{1}{5} (-2) \sqrt{\frac{3}{193} \left(28 \sqrt{3}+187\right)},\text{s2}\to \frac{1}{10} (-3) \sqrt{\frac{1}{193} \left(211-84 \sqrt{3}\right)}\right\},\left\{x\to -\sqrt{25-12 \sqrt{3}},\text{c1}\to -\frac{1}{5} \sqrt{\frac{1}{193} \left(2581-336 \sqrt{3}\right)},\text{c2}\to -\frac{1}{10} \sqrt{\frac{1}{193} \left(756 \sqrt{3}+17401\right)},\text{s1}\to \frac{2}{5} \sqrt{\frac{3}{193} \left(28 \sqrt{3}+187\right)},\text{s2}\to \frac{3}{10} \sqrt{\frac{1}{193} \left(211-84 \sqrt{3}\right)}\right\},\left\{x\to \sqrt{25-12 \sqrt{3}},\text{c1}\to \frac{1}{5} \sqrt{\frac{1}{193} \left(2581-336 \sqrt{3}\right)},\text{c2}\to \frac{1}{10} \sqrt{\frac{1}{193} \left(756 \sqrt{3}+17401\right)},\text{s1}\to \frac{1}{5} (-2) \sqrt{\frac{3}{193} \left(28 \sqrt{3}+187\right)},\text{s2}\to \frac{1}{10} (-3) \sqrt{\frac{1}{193} \left(211-84 \sqrt{3}\right)}\right\},\left\{x\to \sqrt{25-12 \sqrt{3}},\text{c1}\to \frac{1}{5} \sqrt{\frac{1}{193} \left(2581-336 \sqrt{3}\right)},\text{c2}\to \frac{1}{10} \sqrt{\frac{1}{193} \left(756 \sqrt{3}+17401\right)},\text{s1}\to \frac{2}{5} \sqrt{\frac{3}{193} \left(28 \sqrt{3}+187\right)},\text{s2}\to \frac{3}{10} \sqrt{\frac{1}{193} \left(211-84 \sqrt{3}\right)}\right\},\left\{x\to -\sqrt{12 \sqrt{3}+25},\text{c1}\to -\frac{1}{5} \sqrt{\frac{1}{193} \left(336 \sqrt{3}+2581\right)},\text{c2}\to -\frac{1}{10} \sqrt{\frac{1}{193} \left(17401-756 \sqrt{3}\right)},\text{s1}\to \frac{1}{5} (-2) \sqrt{\frac{1}{193} \left(561-84 \sqrt{3}\right)},\text{s2}\to \frac{1}{10} (-3) \sqrt{\frac{1}{193} \left(84 \sqrt{3}+211\right)}\right\},\left\{x\to -\sqrt{12 \sqrt{3}+25},\text{c1}\to -\frac{1}{5} \sqrt{\frac{1}{193} \left(336 \sqrt{3}+2581\right)},\text{c2}\to -\frac{1}{10} \sqrt{\frac{1}{193} \left(17401-756 \sqrt{3}\right)},\text{s1}\to \frac{2}{5} \sqrt{\frac{1}{193} \left(561-84 \sqrt{3}\right)},\text{s2}\to \frac{3}{10} \sqrt{\frac{1}{193} \left(84 \sqrt{3}+211\right)}\right\},\left\{x\to \sqrt{12 \sqrt{3}+25},\text{c1}\to \frac{1}{5} \sqrt{\frac{1}{193} \left(336 \sqrt{3}+2581\right)},\text{c2}\to \frac{1}{10} \sqrt{\frac{1}{193} \left(17401-756 \sqrt{3}\right)},\text{s1}\to \frac{1}{5} (-2) \sqrt{\frac{1}{193} \left(561-84 \sqrt{3}\right)},\text{s2}\to \frac{1}{10} (-3) \sqrt{\frac{1}{193} \left(84 \sqrt{3}+211\right)}\right\},\left\{x\to \sqrt{12 \sqrt{3}+25},\text{c1}\to \frac{1}{5} \sqrt{\frac{1}{193} \left(336 \sqrt{3}+2581\right)},\text{c2}\to \frac{1}{10} \sqrt{\frac{1}{193} \left(17401-756 \sqrt{3}\right)},\text{s1}\to \frac{2}{5} \sqrt{\frac{1}{193} \left(561-84 \sqrt{3}\right)},\text{s2}\to \frac{3}{10} \sqrt{\frac{1}{193} \left(84 \sqrt{3}+211\right)}\right\}\right\}\] |
|