- 注册时间
- 2011-3-28
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 13453
- 在线时间
- 小时
|
发表于 2019-3-4 17:36:15
|
显示全部楼层
本帖最后由 zeroieme 于 2019-3-4 17:42 编辑
合并4#,6#,7#的代码,同时把外接圆半径定为1。
- {Array[Subscript[r,o]{Cos[Subscript[\[Theta],#]],Sin[Subscript[\[Theta],#]]}&,3](*外接圆以原点为圆心,Subscript[r,o]为半径*),Array[{d,0}+Subscript[r,i]{Cos[Subscript[\[Theta],#]],Sin[Subscript[\[Theta],#]]}&,3,4](*内切圆以{d,0}为圆心,Subscript[r,i]为半径*),{x,y}}//#/.{Cos[Subscript[\[Theta],i_]]:>Subscript[Cos\[Theta],i],Sin[Subscript[\[Theta],i_]]:>Subscript[Sin\[Theta],i]}&//Function[{ABCPoints,CDFPoints,g},{Subsets[ABCPoints,{2}],CDFPoints}//(*每条边分配一个切点*)Transpose//Parallelize[Function[{l,p},{p-{d,0}//#/Subscript[r,i]&//(*正弦余弦平方和为1*)Total[#^2]==1&,{Append[l,p],{p,Complement[ABCPoints,l]//Flatten,g}}//(Subsets[#,{2}]//(Subtract@@#//Divide@@#&//Factor)&/@#&//Subsets[#,{2}]&//Equal@@#&/@#&(*共线条件*))&/@#&,{l,{p,{d,0}}}//(Subtract@@#//Divide@@#&//Factor)&/@#&//Times@@#&//(*边与相切半径垂直条件*)#==-1&//Solve[#,Cases[Variables[p],Subscript[Cos\[Theta],_]]]&}//#[[1;;-2]]/.#[[-1]]&//Flatten//(Subtract@@#//Factor//Numerator)&/@#&//#/.(#~Function[{PolynomialList,\[Zeta]},Select[PolynomialList,Exponent[#,\[Zeta]]==1&][[1]]//Solve[#==0,\[Zeta]]&]~Cases[Variables[p],Subscript[Sin\[Theta],_]][[1]])&]@@#&/@#]&]@@#&//#/.Solve[d^2==Subscript[r,o](Subscript[r,o]-2Subscript[r,i]),Subscript[r,i]]&//Flatten//Parallelize[(#/.{Subscript[Cos\[Theta],i_]:>Cos[Subscript[\[Theta],i]],Subscript[Sin\[Theta],i_]:>Sin[Subscript[\[Theta],i]]}/.{Subscript[\[Theta],i_]:>2ArcTan[Subscript[HalfTan\[Theta],i]]}//TrigExpand//Factor//Numerator)&/@#]&//Complement[#,{0}]&//{#,(Select[#,Exponent[#,x]==1\[And]Exponent[#,y]==1&][[1;;2]]//Solve[#=={0,0},{x,y}]&//Factor//Flatten)}&//{{#[[1]]/.#[[2]],Table[{x,y}/.#[[2]]//(#-(#/.\[Rho]))&,{\[Rho],Array[Subscript[HalfTan\[Theta],#]&,3]//Function[{\[Xi]},Permutations[\[Xi]]//({#,\[Xi]}//Transpose//Rule@@#&/@#&)&/@#&]}]}//Flatten//Parallelize[(#//Factor//Numerator)&/@#]&//Complement[#,{0}]&//{#,Array[(SymmetricPolynomial[#,Array[Subscript[HalfTan\[Theta],#]&,3]]-Subscript[s,#])&,3]}&//Fold[Function[{XToSymmetricPolynomial,i},Map[(PolynomialRemainder[#,XToSymmetricPolynomial[[2,1]],Subscript[HalfTan\[Theta],i]]//CoefficientList[#,Subscript[HalfTan\[Theta],i]]&//Factor)&,XToSymmetricPolynomial,{2}]//(#//Flatten//DeleteCases[#,0]&)&/@#&],#,{1,2,3}]&//#[[1]]&//{#,(Select[#,Exponent[#,Subscript[s,3]]==1&]//First//Solve[#==0,Subscript[s,3]]&//First)}&//{#[[1]]/.#[[2]]//Parallelize[(#//Factor//Numerator)&/@#]&//Complement[#,{0}]&//PolynomialGCD@@#&//Solve[#==0,Subscript[s,2]]&,#[[2]]}&//{#[[1]],#[[2]]/.#[[1]]}&//Flatten//(Subtract@@#//#/.Array[(Subscript[s,#]->SymmetricPolynomial[#,Array[Subscript[HalfTan\[Theta],#]&,3]])&,3]&//Factor//Numerator)&/@#&,#[[2]]}&//{#[[1,2]],#[[2]]}/.Solve[#[[1,1]]==0,Subscript[HalfTan\[Theta],3]][[1]]&//{#[[1]]//Factor//Numerator,#[[2]]//Parallelize[(#//Factor)&/@#]&}&//Function[{DividePolynomial,Rules},Parallelize[#[[1]]->({Numerator[#[[2]]],Denominator[#[[2]]]}//PolynomialRemainder[#,DividePolynomial,Subscript[HalfTan\[Theta],2]]&/@#&//Divide@@#&//Factor//#/.{Subscript[HalfTan\[Theta],1]->Sin[Subscript[\[Theta],1]]/(1+Cos[Subscript[\[Theta],1]])}&//Factor//TrigReduce//FullSimplify//Factor//Which[#[[0]]===Plus,Collect[#,{d,Subscript[r,o]},FullSimplify],#[[0]]===Power,Collect[#[[1]],{d,Subscript[r,o]},FullSimplify]^#[[2]],True,#]&/@#&)&/@Rules]]@@#&//#/.{Subscript[r,o]->1}&//{#//Parallelize[Simplify/@#]&,#//(Subtract@@#/.{Subscript[\[Theta],i_]:>2ArcTan[Subscript[HalfTan\[Theta],i]]}//TrigExpand//Factor//Numerator)&/@#&//FixedPoint[(#//SortBy[#,Exponent[#,Subscript[HalfTan\[Theta],1]]&]&//Which[Exponent[#[[1]],Subscript[HalfTan\[Theta],1]]==0,#,Exponent[#[[1]],Subscript[HalfTan\[Theta],1]]==1,#[[2;;-1]]/.Solve[#[[1]]==0,Subscript[HalfTan\[Theta],1]][[1]],True,Append[Table[PolynomialRemainder[\[Alpha],#[[1]],Subscript[HalfTan\[Theta],1]],{\[Alpha],#[[2;;-1]]}],#[[1]]]]&//Parallelize[(#//Factor//Numerator//\[LightBulb] #&//Select[#,Variables[#]\[Intersection]{Subscript[HalfTan\[Theta],1],x,y}!={}&]&//Collect[#,Subscript[HalfTan\[Theta],1],Factor]&)&/@#]&)&,#]&//MapAll[If[#[[0]]===Plus,(MonomialList[#,{x,y}]//Collect[#,{x,y},Simplify]&/@#&//Total),#]&,#]&//First}&
复制代码
结果
\(\left\{\left\{x\to \frac{d \left(8 d^4+d^3 \cos \left(3 \theta _1\right)+4 \left(d^2-5\right) d^2 \cos \left(2 \theta _1\right)-44 d^2+\left(d^6-11 d^4+26 d^2+48\right) d \cos \left(\theta _1\right)-d \cos \left(3 \theta _1\right)-12\right)}{\left(d^2-9\right) \left(d^2-2 d \cos \left(\theta _1\right)+1\right){}^2},y\to -\frac{(d-1) d^2 (d+1) \sin \left(\theta _1\right) \left(d^4-6 d^2+8 d \cos \left(\theta _1\right)-2 \cos \left(2 \theta _1\right)-1\right)}{\left(d^2-9\right) \left(d^2-2 d \cos \left(\theta _1\right)+1\right){}^2}\right\},\left(-(d+3)^2 \left(d^3-9 d^2+19 d-19\right) x^2+8 d \left(d^5-d^4-10 d^3+18 d^2+17 d-57\right) x+d^2 \left(d^7-3 d^6-10 d^5+30 d^4+57 d^3-171 d^2-80 d+304\right)-(d+3)^2 (d-3)^3 y^2\right)^2 \color{red}{\left(\left(9-d^2\right) x^2+8 d\left(d^2-3\right) x+\left(9-d^2\right) y^2+\left(d^4-9 d^2+16\right) d^2\right)} \left(\left(d^3+3 d^2+3 d+9\right)^2 (d-3)^3 y^2+(d+3)^2 \left(d^7-9 d^6+45 d^5-125 d^4+223 d^3-231 d^2+195 d-195\right) x^2+4 d^2 \left(15 d^7-45 d^6-90 d^5+286 d^4+23 d^3-165 d^2+372 d-780\right)+8 d \left(2 d^8-6 d^7-6 d^6+79 d^5-129 d^4-156 d^3+252 d^2-237 d+585\right) x\right)^2\right\}\)
外接圆半径定为1后,圆因子跑到第二位了。其他因子是增根吗? |
|