- 注册时间
- 2012-4-20
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3394
- 在线时间
- 小时
|
发表于 2023-8-11 23:17:16
|
显示全部楼层
本帖最后由 creasson 于 2023-8-11 23:27 编辑
较完整的求解如下:
- Clear["Global`*"];
- (*获得各点的表示*)
- points = {A->0, C->c,B->c ( 1 - I Tan[\[Theta]] )/(1 + I Tan[\[Phi] - \[Theta]]), D->c ( 1 - I Tan[\[Theta]] )/(1 - I Tan[\[Phi]]),T->c (1-I Tan[\[Theta]])/(1-I u)};
- assums = {0 < \[Theta] < \[Pi]/2, \[Theta] < \[Phi] < \[Pi]/2};
- AppendTo[points, P->Factor[ComplexExpand[Re[D/.points]]]//FullSimplify];
- (*面积计算*)
- kernel = -(1/2)Factor[ComplexExpand[Im[# * D[ComplexExpand[Conjugate[#]], u]]]]&@((T-P)/.points);
- integral = Integrate[kernel, u];
- area1 = Limit[integral, u->-Tan[\[Phi] - \[Theta]]] - Limit[integral, u->-\[Infinity]];
- area1 = FullSimplify[area1, Assumptions->assums];
- area2 = Limit[integral, u->Tan[\[Theta]]] - Limit[integral, u->-Tan[\[Phi] - \[Theta]]];
- area2 = FullSimplify[area2, Assumptions->assums];
- area3 = Limit[integral, u-> Tan[\[Phi]]] - Limit[integral, u->Tan[\[Theta]]];
- area3 = FullSimplify[area3, Assumptions->assums];
- area4 = Limit[integral, u->\[Infinity]] - Limit[integral, u->Tan[\[Phi]]];
- area4 = FullSimplify[area4, Assumptions->assums];
- areas = {area1, area2, area3, area4};
- (*数值求解*)
- eqs = {area1 - 25, area2 - 20, area3 - 12};
- sols = FindRoot[ eqs == 0, {c, 5}, {\[Theta], \[Pi]/4}, {\[Phi], \[Pi]/3}, WorkingPrecision->100];
- Print["待求区域面积为: ", area4/.sols];
- (*公式求解, 消元参数c*)
- eq1 = Factor[SubresultantPolynomialRemainders[eqs[[1]], eqs[[2]], c][[-1]]];
- eq1 = FactorList[eq1][[-1]][[1]];
- Print["条件式1:", eq1];
- eq2 = Factor[SubresultantPolynomialRemainders[eqs[[3]], eqs[[2]], c][[-1]]];
- eq2 = FactorList[eq2][[-1]][[1]];
- Print["条件式2:", eq2];
- eq3 = Factor[SubresultantPolynomialRemainders[(area4 - S), eqs[[2]], c][[-1]]];
- eq3 = FactorList[eq3][[-1]][[1]];
- Print["待求区域面积表示:", Solve[eq3 == 0, S]//Factor//Flatten];
复制代码
这将给出如下输出
再人工化简一下即可:
- Clear["Global`"];
- eqs = {32 \[Pi]+77 \[Theta]-90 \[Phi]+32 Sin[\[Theta]]-45 Sin[\[Theta]-2 \[Phi]], 8 \[Pi]-37 \[Theta]-37 Sin[\[Theta]]+90 Sin[\[Theta]-\[Phi]]+90 Sin[\[Phi]]};
- sols = FindRoot[eqs == 0, {\[Theta], \[Pi]/2}, {\[Phi], (2 \[Pi])/3}, WorkingPrecision -> 1000];
- area = (3 (11 \[Pi]-19 \[Theta]-19 Sin[\[Theta]]))/(\[Pi]+\[Theta]+Sin[\[Theta]]);
- Print["待求面积为: ", area /. sols]
复制代码
这里所给的表示与前面的有细微差异.
|
|