找回密码
 欢迎注册
查看: 59434|回复: 33

[讨论] 另类极值

[复制链接]
发表于 2009-12-13 12:20:31 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有账号?欢迎注册

×
已知$x_1,x_2,x_3,x_4$为正数,求下列函数的最大值
(1)  $x_1/{1+x_1^2}+x_2/{1+x_1^2+x_2^2}$

(2) $x_1/{1+x_1^2}+x_2/{1+x_1^2+x_2^2}+x_3/{1+x_1^2+x_2^2+x_3^2}$

(3) $x_1/{1+x_1^2}+x_2/{1+x_1^2+x_2^2}+x_3/{1+x_1^2+x_2^2+x_3^2}+x_4/ {1+x_1^2+x_2^2+x_3^2+x_4^2}$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-13 14:02:08 | 显示全部楼层
对各个参数的偏导等于零,得出的值与在边界点的值作比较,就是要找的答案。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-12-13 14:04:46 | 显示全部楼层
呵,这个原理谁都知道,现在的问题的最终答案是什么 ??
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-13 14:09:45 | 显示全部楼层
用数学软件解吧,高手来结贴。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-12-13 14:18:05 | 显示全部楼层
这个极值之所以称为另类是,取极值时,各变量并不相等 ... 对于五元以上的问题,现在依靠软件也非常吃力...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-13 15:23:16 | 显示全部楼层
本帖最后由 wiley 于 2009-12-13 17:16 编辑 (1) x都是正数. 对任意的x1, $x_2/{1+x_1^2+x_2^2} \le 1/{2\sqrt{1+x_1^2}}$ 然后作代换 x1=tan(t), 角度的取值范围是(0,pi/2). 所以需要 $1/2(\sin(2t)+\cos(t))$ 的最大值. 求导得到的结果是${(3+\sqrt{33})(\sqrt{30+2\sqrt{33}})}/64 ~ 0.88$ (2) $x_3/{1+x_1^2+x_2^2+x_3^2} \le 1/{2\sqrt{1+x_1^2+x_2^2}}$ 类似地作代换 $x_2=\sqrt{1+x_1^2}\tan(t)$, 得到和(1)一样的关于t的函数. 所以需要 $x_1/{1+x_1^2}+{(3+\sqrt{33})(\sqrt{30+2\sqrt{33}})}/{64\sqrt{1+x_1^2}}$ 的最大值. 再作一次代换x1=tan(t), 结果 ~ 1.196 ----- ----- ----- ----- ----- 普遍的情况是反复求 $\sin(2t)/2+M\cos(t)$ 的最大值. 所以可以对n作递归, M就是(n-1)个变量时的最大值. 若定义函数 $f(x)={(3x+\sqrt{x^2+8})\sqrt{8-2x^2+2x\sqrt{x^2+8}}}/16$ 对于n个变量, 最大值是 $f^{(n)}(0)=f(f(...f(0)))$

评分

参与人数 1贡献 +2 经验 +1 收起 理由
数学星空 + 2 + 1 很简洁的解法

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-12-13 17:30:20 | 显示全部楼层
123.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-13 22:59:46 | 显示全部楼层
呵呵,用Mathematica编了一个程序 {{0.5,{x1->1.}}, {0.880086,{x1->0.736595,x2->1.242}}, {1.19591,{x1->0.609624,x2->0.862679,x3->1.4546}}, {1.47044,{x1->0.530646,x2->0.690138,x3->0.976614,x4->1.64671}}, {1.71578,{x1->0.47539,x2->0.587556,x3->0.764153,x4->1.08135,x5->1.82331}}, {1.93915,{x1->0.433964,x2->0.518225,x3->0.640496,x4->0.833005,x5->1.17879,x6->1.9876}}, {2.14528,{x1->0.401444,x2->0.467627,x3->0.558423,x4->0.69018,x5->0.897622,x6->1.27022,x7->2.14178}}, {2.33746,{x1->0.375057,x2->0.42875,x3->0.499435,x4->0.596408,x5->0.737126,x6->0.958678,x7->1.35663,x8->2.28746}}, {2.51805,{x1->0.353106,x2->0.397752,x3->0.454694,x4->0.529657,x5->0.632497,x6->0.78173,x7->1.01669,x8->1.43872,x9->2.42588}}, {2.68883,{x1->0.334486,x2->0.372336,x3->0.419413,x4->0.479456,x5->0.5585,x6->0.666941,x7->0.824302,x8->1.07206,x9->1.51707,x10->2.55799}}} 代码:
  1. Table[n = kk; Maximize[Sum[a = Symbol /@Array["x" <> ToString[#] &, ii]; Last[a]/(1. + Total[a^2]), {ii, n}], Greater[#, 0] & /@ a /. List -> And, a], {kk, 1, 10}]
复制代码

评分

参与人数 1贡献 +2 收起 理由
数学星空 + 2 呵,学习了...

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-12-14 08:28:49 | 显示全部楼层
本帖最后由 数学星空 于 2009-12-14 08:35 编辑 呵,不知道,mathematica 的编程功能如此简洁而强大... 不知,wayne 有没有关于mathematica 软件编程的资料,上传上来学习一下(或者给一个电子书的链接地址)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-12-14 17:02:12 | 显示全部楼层
本帖最后由 wayne 于 2009-12-14 17:03 编辑 附件是变量个数为1----50时,对应的函数取得最大值的解,这在我的机子上运行花了93秒钟。 {0.5,0.880086,1.19591,1.47044,1.71578,1.93915,2.14528,2.33746,2.51805,2.68883, 2.85119,3.0062,3.15475,3.29756,3.43522,3.56823,3.69702,3.82195,3.94334,4.06148, 4.17659,4.2889,4.39859,4.50584,4.6108,4.7136,4.81437,4.91323,5.01027,5.10559, 5.19929,5.29142,5.38208,5.47133,5.55923,5.64583,5.7312,5.81539,5.89843,5.98038, 6.06128,6.14117,6.22007,6.29804,6.37509,6.45127,6.52659,6.60109,6.6748,6.74773} 当变量个数n一直增大,这个最值似乎在收敛。。。 不知道能否从理论上澄清一下

1--50个变量的解.txt

11.64 KB, 下载次数: 3, 下载积分: 金币 -1 枚, 经验 1 点, 下载 1 次

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 10:37 , Processed in 0.031573 second(s), 20 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表