找回密码
 欢迎注册
楼主: 数学星空

[讨论] 一个不等式证明

[复制链接]
发表于 2020-5-31 12:06:32 | 显示全部楼层
推广到四个数可以要求
求在$x+y+z+w=0$时$(x/y)^2+(y/z)^2+(z/w)^2+(w/x)^2$的最小值

点评

这个漂亮  发表于 2020-6-1 23:24
但是五个数时最小值应该会很难计算了  发表于 2020-5-31 12:15
这个最小值可以在x=z=-y=-w时取到,所以没什么意思。  发表于 2020-5-31 12:13
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-2 23:39:36 | 显示全部楼层
偶数情况就不考虑了, 倒是可以作为数值非线性全局最优化算法的准确性的验证。{但应该还缺少一个证明,证明为啥是都取-1/1的时候全局最小},

随着个数的增加,对全局最优化的算法挑战也变大。要不要大家pk一下,打个擂台,看看谁的代码调的好,算的多算的准

点评

对对对。一语中的!  发表于 2020-6-3 10:29
对于偶数个变量可以直接利用算术平均大于等于几何平均得到极小值为n  发表于 2020-6-3 09:05
嗯,这个建议不错~现在不确定取极值时,每个变量会有几个不同的值?  发表于 2020-6-3 07:28
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-3 16:00:20 | 显示全部楼层
迭代计算
n=5:
[1752894149.5587123138608540960710728995, 1639537472.6683724621956180518651263709, -1212856103.4728717185780177881955635265, -1055198186.4054412651951008800055507927, -1124377332.3487717922833534797350849514]
s=5.5837424137607321737587108695119652893

n=7:
[725467317.50597916105355757106960865840, 666196070.04079195046635925228552135018, -552176438.25923350117322856946539955734, -497471285.57848992956158260547848371196, -490034633.99937069977547949531085224260, -537187741.75431561689415000302125979689, 685206712.04463863588452384992086530021]
s=7.2429439431253376102344469504453164735

n=9:
[-398333547.03949660537981885453071446246, 379977187.57283816088904255835321159308, -337070142.84417324120690782864339925716, -318735337.39071680947089197467724429591, -322926341.87729084882997535115800870115, -354848570.12723339048904867130872738548, 434263641.68093597166620065496512291888, 467169763.00599415738949819361753890571, 450503347.01914260543190127338222068445]
s=9.1767206884756847786773243621684481839

n=11:
[-1599223178.0239534137959526258888563021, 1519907775.7671666196082558992988500912, -1367398926.6658597436679662209681453783, -1292083892.4155559784941624278150934174, -1285154243.5526473592264370293980533699, -1352992543.9243432653989697258551908615, 1524238153.9536080172465001574487855790, -1591983274.9528557257755615073043090670, 1800027151.3148877122764054286818845606, 1862261020.6565629748973990364723834962, 1782401957.8429901623304890153277446695]
s=11.130551383065715848548656261520702727

n=13:
[-604833506.59846018631949140076725692380, -590378945.61327031598924351410159325244, -596202620.75577996702960352931786148072, -624690994.26159621516634571440054165342, 682465978.49685379693466859018758256461, -712440186.18533759716089352657419623233, 779963167.24541426255761196402616090228, 810740373.37842436105272854166295634996, 802641827.95410368456176531367592583206, 760431126.32709248993376490436642401650, -693314345.46584989552146401626428009038, -654552648.06661362610786358572160931708, 640170773.54501920825436597322828928482]
s=13.081351595802460124520674307229984034

而n=13还可以有次优结果:
[-1412514727.2397332648302160068842839511, 1276644333.8115743477876127119279090617, -1211809366.0871994714831647695339190531, 1097851206.5663556169534950040446740704, 1037338577.7779693963357431831232185526, 1023519445.5673132444024804057218601072, 1058195114.0064073854796547109266918185, -1154048202.4798242078392812866154056375, 1187710215.4530476551387647049838205998, -1297623072.5259722223052252123729103648, 1328566131.5165358793528474598814179887, -1453920304.0713306379902791126902811766, -1479909352.2951437210024317925127920157]
s=13.109736927440767969109114269108661673
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-3 16:04:26 | 显示全部楼层
算法很简单,先随机产生n个和为0的随机数$x_1,x_2,...,x_n$
然后依次挑选其中任意两个数$x_i, x_{i+1}$, 然后限定其它数都不变,求仅改变$x_i,x_{i+1}$情况下的最小值问题,这时要求限定条件两者之和为常数时的极值情况,对应取机制条件为一个7次方程,依次将方程7个解代入找到最小值情况。
仿佛迭代上面过程就可以收敛到一个不错的解。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-3 17:13:24 | 显示全部楼层
我的代码 有一部分的手工调参的过程。5和7的时候跟mathe的一样,之后的都比mathe的要好些,嘿嘿,先贴结果:
n=5的时候[等同于mathe在楼上贴出的5.5837424137607321737587108695119652893]::
{5.5837424137607321737587108695119652893919081384213,{f[1]->1.0774915816252611015093454171487320315423587907721,f[2]->-0.79707982464586797618833901245223296846916963478189,f[3]->-0.69346823829996056491061216466765819739714481880392,f[4]->-0.73893224788837763464989514401058586127422509002876,f[5]->1.1519887292089450742395009039817449955981807528424}}

n=7的时候[等同于mathe在楼上贴出的7.2429439431253376102344469504453164735]::
{7.2429439431253376102344469504453164735238599972906,{f[1]->1.0000000000000000000000000000000000000000000000000,f[2]->-0.828849738224098355469939271886081951515338888037,f[3]->-0.74673404415013914960661076172666833989974649116707,f[4]->-0.73557118697707915982126609056357065994091604934711,f[5]->-0.80635081158828060112893221736553912815519827988095,f[6]->1.0285361064989210188156138252164780690963323208595,f[7]->1.0889696744406762472111345163253820104148673875722}}

n=9的时候[优于mathe在楼上贴出的9.1767206884756847786773243621684481839]:
{9.1208835938805801963410199725647599711420989460098,{f[1]->1.0000000000000000000000000000000000000000000000000,f[2]->0.930740206278065169727878722614768732582068478621,f[3]->-0.82130885143478080833013734600956493201676736245317,f[4]->-0.75941909989461782471627497384130476496768405393861,f[5]->-0.73633935236349721211808185563486105425924375810856,f[6]->-0.75116066726416262783660468242271140263430250182076,f[7]->-0.81183293532881364488491012222660861488130465873415,f[8]->0.94193193905706388635947055866378568804168301792334,f[9]->1.0073887609507430617986596988564963481355508385114}}

n=11的时候[优于mathe在楼上贴出的11.130551383065715848548656261520702727]:
{11.0681076691778873386044486618962711125899559599643068476885,{f[1]->1.00000000000000000000000000000000000000000000000000000000000,f[2]->1.0591079647066245571448582028357748512073505879395410639344,f[3]->1.07655514133327716901095323093407555338507084854829059567090,f[4]->1.05288850660187980210135568948437222267333817937289464469642,f[5]->0.994280013163685428624838161017644721809755939953083019131955,f[6]->-0.910290822148993589951480728067057691605423737742647491216290,f[7]->-0.857308495551433440741403062929512690566358372155343282247626,f[8]->-0.830494641418891092720346939039322268355117229693517788260689,f[9]->-0.828119905995725776386219333675006922630104557827005576626012,f[10]->-0.851408342076334153830990563899569534839248761361667935868589,f[11]->-0.905209418614088903251564656661398241079262897033627249214475}}

n=13的时候[优于mathe在楼上贴出的13.081351595802460124520674307229984034]:
内点法给出的结果:
{13.041937521812376592163675384366442597497488571462,{f[1]->1.0000000000000000000000000000000000000000000000000,f[2]->0.998285819436214092906357513226775372465931212257,f[3]->0.97415083639981177328608567343885794441296248062401,f[4]->0.93061064699648867926715362115714003451626980517661,f[5]->-0.87185599512201005221876890334105574262707876958601,f[6]->-0.83184469110362413512234719903008557078503529566325,f[7]->-0.80812069623983331068454037995713688192691376783600,f[8]->-0.79947336058841925189129348801609782975079175394005,f[9]->-0.80581260972087375624258254717035297637092550859083,f[10]->-0.82822539959381550472982310521769437603471995829045,f[11]->-0.86924714828958058285319710685492704141350078989848,f[12]->0.93345820269872347033942567076775013009003935341953,f[13]->0.97807439512691857794353025099682693742376299232772}}

n=15的时候:
内点法给出的结果:
{15.027579704577829300111481675284693984939461227768,{f[1]->1.005055135433105614515747160447609006197748555743,f[2]->0.96794553942599517311429387868409700111977101242392,f[3]->0.94366007520733754613887327193557942016752832328608,f[4]->0.93127634609807370476344594301335054862532636927128,f[5]->0.93046546385997668503487260555259974554836614259297,f[6]->0.94148062487649719552435996333869054560186558588658,f[7]->0.96521017646890419866949116435038820891274500142133,f[8]->1.0033096377380125779295465619784533881022059256324,f[9]->-1.0584458213366884534887153623496661126780305719296,f[10]->-1.0993458231520614894768999422508587994762910340487,f[11]->-1.1240534881668975071698655862799799543494507807340,f[12]->-1.1315862682443048646869792085963908718238985769344,f[13]->-1.1220102098390985543233534351001296542215192794486,f[14]->-1.0963821589817560536838880056631652422156449634511,f[15]->-1.0565792293870957728609290090605772295107217097113}}

n=17的时候:
内点法给出的结果:
{17.021781121957166209092328829372393295839915421680,{f[1]->1.000000000000000444089612867969937607300082461119,f[2]->1.0222442218069296508185113412423675450457001562661,f[3]->1.0323064821707284470006570136172189114331976817558,f[4]->1.0300017438640309814118426503880446379339677291732,f[5]->1.0157260719486122444557306759512380066493708617276,f[6]->0.99039708979579957435258547365002932707617427117558,f[7]->-0.95535102129949301877445004819828984836318198197895,f[8]->0.93116880823997103888568125733505537031809575384725,f[9]->-0.89845244071703528975609029365772464751310516561516,f[10]->-0.87539582445591642203031233000419125857485861646712,f[11]->-0.86124947542283315638385615012682323473016709301033,f[12]->-0.85562189616645118447308581316506524261901185619277,f[13]->-0.85845739887525336742555536359838392048703380520514,f[14]->-0.87004234992781356398372511373462494930619105335011,f[15]->-0.89104209220582358451101259974940452861961233629691,f[16]->-0.92257582642735957749785000024788048504024280232517,f[17]->0.96634390767190678382131643232849670949681579537714}}

  1. With[{param=f/@Range[7]},NMinimize[{(param/RotateLeft[param])^2//Total,Total[param]==0},param,Method->{"SimulatedAnnealing","PerturbationScale"->2},WorkingPrecision->50]]
复制代码

模拟退火算法有一个参数需要手工挨个的试。不过有mathe率先立出的靶子就是好, 可以不停的试,直到比mathe的结果要好为止,哈哈哈,^_^


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-3 17:46:13 | 显示全部楼层
后来发现,内点法总能得到最优解。不仅给前面的模拟退火的结果树立了好的靶子,还把n=13的结果给刷新记录了。
  1. With[{param=f/@Range[13]},NMinimize[{(param/RotateLeft[param])^2//Total,Total[param]==0,f[1]>1},param,Method->{"RandomSearch",Method->"InteriorPoint"},WorkingPrecision->50]]
复制代码

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-6-3 19:13:27 | 显示全部楼层
对于n=5,我们可以利用拉格朗日乘子法求解:

设\(s=(\frac{a_1}{a_2})^2+(\frac{a_2}{a_3})^2+(\frac{a_3}{a_4})^2+(\frac{a_4}{a_5})^2+(\frac{a_5}{a_1})^2-t(a_1+a_2+a_3+a_4+a_5)\)

然后分别对\(a_1,a_2,a_3,a_4,a_5\)求导得到

\(\frac{2a_1}{a_2^2}-\frac{2a_5^2}{a_1^3}-t=0\)

\(\frac{2a_2}{a_3^2}-\frac{2a_1^2}{a_2^3}-t=0\)

\(\frac{2a_3}{a_4^2}-\frac{2a_2^2}{a_3^3}-t=0\)

\(\frac{2a_4}{a_5^2}-\frac{2a_3^2}{a_4^3}-t=0\)

\(\frac{2a_5}{a_1^2}-\frac{2a_4^2}{a_5^3}-t=0\)

联立\(a_1+a_2+a_3+a_4+a_5=0\)

消元可以得到:\(\frac{a_1}{a_2},\frac{a_2}{a_3},\frac{a_3}{a_4},\frac{a_4}{a_5},\frac{a_5}{a_1}\)满足下列代数方程:

k^115 + 23*k^114 + 249*k^113 + 1670*k^112 + 7624*k^111 + 24079*k^110 + 48125*k^109 + 27390*k^108 - 194074*k^107 - 810670*k^106 - 1626373*k^105 - 1288826*k^104 + 2778641*k^103 + 11738550*k^102 + 19630036*k^101 + 10320797*k^100 - 31532695*k^99 - 92117225*k^98 - 107269999*k^97 + 3435081*k^96 + 231660459*k^95 + 391224442*k^94 + 206246680*k^93 - 378297093*k^92 - 928431589*k^91 - 736884523*k^90 + 405033990*k^89 + 1595544211*k^88 + 1381917117*k^87 - 528554951*k^86 - 2148374397*k^85 - 710178650*k^84 + 3672518516*k^83 + 6027459933*k^82 + 137885204*k^81 - 13545223892*k^80 - 23466841305*k^79 - 13912675691*k^78 + 18462662623*k^77 + 53044993824*k^76 + 55027810900*k^75 + 6320558079*k^74 - 67118078419*k^73 - 103540718624*k^72 - 55319946715*k^71 + 56880180634*k^70 + 141944986609*k^69 + 108696828905*k^68 - 41235950427*k^67 - 188588342979*k^66 - 186155745118*k^65 - 1259054738*k^64 + 224571806060*k^63 + 281302668790*k^62 + 87479376684*k^61 - 208102749488*k^60 - 341062379944*k^59 - 176131340106*k^58 + 150689937912*k^57 + 345084562767*k^56 + 228620637610*k^55 - 89015665102*k^54 - 313263865978*k^53 - 245719559865*k^52 + 34445141554*k^51 + 262495548942*k^50 + 247215658204*k^49 + 33994104985*k^48 - 169366259124*k^47 - 199853150078*k^46 - 69844640968*k^45 + 79492615023*k^44 + 124692614485*k^43 + 57219576822*k^42 - 39920485612*k^41 - 84412568575*k^40 - 58448475096*k^39 - 1216958390*k^38 + 38835152402*k^37 + 41339440748*k^36 + 18221060456*k^35 - 5938615689*k^34 - 15184534622*k^33 - 9191446682*k^32 + 3151208042*k^31 + 12084462612*k^30 + 11672680281*k^29 + 3469355163*k^28 - 4436900416*k^27 - 5903263890*k^26 - 2414034277*k^25 + 867389024*k^24 + 1439505390*k^23 + 269066013*k^22 - 957490933*k^21 - 1354685713*k^20 - 931619236*k^19 - 289563094*k^18 + 13550781*k^17 - 43634284*k^16 - 156177334*k^15 - 157059379*k^14 - 93266479*k^13 - 41846806*k^12 - 19221448*k^11 - 10894026*k^10 - 6314386*k^9 - 3101734*k^8 - 1225816*k^7 - 388930*k^6 - 99388*k^5 - 20305*k^4 - 3224*k^3 - 374*k^2 - 28*k - 1=0

可以求得代数方程的实根分别为:[-2.362410088312962034859919, -1.450440455762255802533788, -1.382687832725138383385208, -1.351798839098676672923711, -0.8593978432356048237104345, -0.6414405186028098699134122, -0.5381188972219660445212091, -0.1714218736650791520866084, 0.9384733719250471560187946, 0.9904799044884984442453844, 1.069139424246187015143149, 1.078210237863080636430359, 1.149410716487768093506190, 1.386959077295580867453245, 1.797501070895192625003567]

其中(如何筛选出下面的解,还没搞清楚)

\(\frac{a_1}{a_2}=-1.351798839098676672923711\)

\(\frac{a_2}{a_3}=1.149410716487768093506190\)

\(\frac{a_3}{a_4}=0.9384733719250471560187946\)

\(\frac{a_4}{a_5}=-0.6414405186028098699134122\)

\(\frac{a_5}{a_1}=1.069139424246187015143149\)

点评

厉害,115次方程了。不知道7个数要到多少次  发表于 2020-6-5 08:49
佩服佩服  发表于 2020-6-4 10:24
要采用逐级消元的方式,每次分解掉无用的因子,这样才能简化结果,否则表达式呈几何级数增加,电脑会吃不消的~  发表于 2020-6-3 21:25
这五个数由于是 齐次的,所以可以令其中一个为1, 比如就设$a_1=1$  发表于 2020-6-3 21:16
这个代数方程是怎么化简出来的。 我直接用Mathematica的Reduce/Solve 搞不动。是需要什么额外的技巧吗  发表于 2020-6-3 21:14
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-4 09:48:17 | 显示全部楼层
数学星空 发表于 2020-6-3 19:13
对于n=5,我们可以利用拉格朗日乘子法求解:

设\(s=(\frac{a_1}{a_2})^2+(\frac{a_2}{a_3})^2+(\frac{a_3 ...

我在你算出来的这15个实根里每五个一组,计算一下平方和,跑了一遍,找到了5.5837424137607321737587108695119652893919081384213的组合:
  1. func=-1-28 #1-374 #1^2-3224 #1^3-20305 #1^4-99388 #1^5-388930 #1^6-1225816 #1^7-3101734 #1^8-6314386 #1^9-10894026 #1^10-19221448 #1^11-41846806 #1^12-93266479 #1^13-157059379 #1^14-156177334 #1^15-43634284 #1^16+13550781 #1^17-289563094 #1^18-931619236 #1^19-1354685713 #1^20-957490933 #1^21+269066013 #1^22+1439505390 #1^23+867389024 #1^24-2414034277 #1^25-5903263890 #1^26-4436900416 #1^27+3469355163 #1^28+11672680281 #1^29+12084462612 #1^30+3151208042 #1^31-9191446682 #1^32-15184534622 #1^33-5938615689 #1^34+18221060456 #1^35+41339440748 #1^36+38835152402 #1^37-1216958390 #1^38-58448475096 #1^39-84412568575 #1^40-39920485612 #1^41+57219576822 #1^42+124692614485 #1^43+79492615023 #1^44-69844640968 #1^45-199853150078 #1^46-169366259124 #1^47+33994104985 #1^48+247215658204 #1^49+262495548942 #1^50+34445141554 #1^51-245719559865 #1^52-313263865978 #1^53-89015665102 #1^54+228620637610 #1^55+345084562767 #1^56+150689937912 #1^57-176131340106 #1^58-341062379944 #1^59-208102749488 #1^60+87479376684 #1^61+281302668790 #1^62+224571806060 #1^63-1259054738 #1^64-186155745118 #1^65-188588342979 #1^66-41235950427 #1^67+108696828905 #1^68+141944986609 #1^69+56880180634 #1^70-55319946715 #1^71-103540718624 #1^72-67118078419 #1^73+6320558079 #1^74+55027810900 #1^75+53044993824 #1^76+18462662623 #1^77-13912675691 #1^78-23466841305 #1^79-13545223892 #1^80+137885204 #1^81+6027459933 #1^82+3672518516 #1^83-710178650 #1^84-2148374397 #1^85-528554951 #1^86+1381917117 #1^87+1595544211 #1^88+405033990 #1^89-736884523 #1^90-928431589 #1^91-378297093 #1^92+206246680 #1^93+391224442 #1^94+231660459 #1^95+3435081 #1^96-107269999 #1^97-92117225 #1^98-31532695 #1^99+10320797 #1^100+19630036 #1^101+11738550 #1^102+2778641 #1^103-1288826 #1^104-1626373 #1^105-810670 #1^106-194074 #1^107+27390 #1^108+48125 #1^109+24079 #1^110+7624 #1^111+1670 #1^112+249 #1^113+23 #1^114+#1^115&;
  2. realrootindex=Select[Range[115],Element[Root[func,#],Reals]&];
  3. N[Total[(Root[func,#]&/@{4,6,9,11,13})^2],100]
复制代码

5.583742413760732173758710869511965289391908138421222113567417214069488710462275126439321609823493105
。。

然后我稍微转化了一下,已知\(x y z s t =1,\frac{1}{x}+\frac{1}{x y} +\frac{1}{x y z}+\frac{1}{x y z s }+\frac{1}{x y z s t }=0\),求\(x^2+y^2+z^2+s^2+t^2\)的最小值。然后尝试将这五个变量都放进一个方程,还是没成功。
代数计算还是太难了,放弃。。

点评

通过前面多个数值计算的方法交叉验证,可以肯定的是只有这个组合是最小的。  发表于 2020-6-4 10:32
不是最小。从小到大排序,第634个,差不多半中间。  发表于 2020-6-4 10:31
所有的1683个组合(从15个选5个),这个最小吗?是否还有其它和值一样或者更小的组合呢?  发表于 2020-6-4 10:25
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-7-21 21:46:49 | 显示全部楼层
由于取极值条件为:

\(\frac{2a_k}{a_{k+1}^2}-\frac{2a_{k-1}^2}{a_k^3}=t\)...........................(1)

可以变形为:

\(\frac{a_k^2}{a_{k+1}^2}-\frac{a_{k-1}^2}{a_k^2}=\frac{ta_k}{2}\)

记\(b_k=\frac{a_{k-1}^2}{a_k^2}\)

则有\(b_{k+1}-b_k=\frac{ta_k}{2}\)

并且\(a_1+a_2+\dots+a_n=0\)

由于(1)是循环的方程,肯定与\(\sin(\frac{2\pi}{n})\)有关,

不知道如何设\(a_k=1+\frac{v_1}{n}+\frac{v_2}{n^2}+\frac{v_3}{n^3}+\dots\)

才能使得\(a_{n+k}=a_k\) ? 即使得(1)对所有1~n都成立

若能搞清楚a_k的渐近表达式结构,应该可以得到我们最终的结论?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-7-22 19:44:35 | 显示全部楼层
对于\(n=7\),我们可以得到下面结果

利用\(\frac{a_k^2}{a_{k+1}^2}-\frac{a_{k-1}^2}{a_k^2}=ta_k\)

可以得到:

\(\frac{a_1^2}{a_2^2}=ta_1+\frac{a_7^2}{a_1^2}\)

\(\frac{a_2^2}{a_3^2}=t(a_1+a_2)+\frac{a_7^2}{a_1^2}\)

\(\frac{a_3^2}{a_4^2}=t(a_1+a_2+a_3)+\frac{a_7^2}{a_1^2}\)

\(\frac{a_4^2}{a_5^2}=t(a_1+a_2+a_3+a_4)+\frac{a_7^2}{a_1^2}\)

\(\frac{a_5^2}{a_6^2}=t(a_1+a_2+a_3+a_4+a_5)+\frac{a_7^2}{a_1^2}\)

\(\frac{a_6^2}{a_7^2}=t(a_1+a_2+a_3+a_4+a_5+a_6)+\frac{a_7^2}{a_1^2}\)

为了更简洁的计算:我们可以设\(a_1=1\),则可以得到

\(a_2+a_3+a_4+a_5+a_6+a_7=-1\)

\(\frac{1}{a_2^2}=t+a_7^2\)

\(\frac{1}{a_3^2}=(t+a_7^2)(t(1+a_2)+a_7^2)\)

\(\frac{1}{a_4^2}=(t+a_7^2)(t(1+a_2)+a_7^2)(t(1+a_2+a_3)+a_7^2)\)

\(\frac{1}{a_5^2}=(t+a_7^2)(t(1+a_2)+a_7^2)(t(1+a_2+a_3)+a_7^2)(t(1+a_2+a_3+a_4)+a_7^2)\)

\(\frac{1}{a_6^2}=(t+a_7^2)(t(1+a_2)+a_7^2)(t(1+a_2+a_3)+a_7^2)(t(1+a_2+a_3+a_4)+a_7^2)(t(1+a_2+a_3+a_4+a_5)+a_7^2)\)

\(\frac{1}{a_7^2}=(t+a_7^2)(t(1+a_2)+a_7^2)(t(1+a_2+a_3)+a_7^2)(t(1+a_2+a_3+a_4)+a_7^2)(t(1+a_2+a_3+a_4+a_5)+a_7^2)(-ta_7+a_7^2)\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 04:24 , Processed in 0.035522 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表