- 注册时间
- 2021-11-19
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 9517
- 在线时间
- 小时
|
王守恩 发表于 2025-5-14 12:16
{1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 27 ...
我来根据你的通项公式,然后由T得到(m,n)的通项公式
- Clear["Global`*"];(*mathematica11.2,win7(64bit)Clear all variables*)
- (*假设数T在第一行,先算出(1,t),t向下取整*)
- ans=Solve[{
- ((m+n)^2-m-3n+2)/2
- ==T/.{m->1}
- },{n}]
- t=Floor[n]/.ans[[2]]
- aa=T-((m+n)^2-m-3n+2)/2/.{m->1,n->t} (*算出T与(1,t)所对应的差值*)
- {m,n}={1+aa,t-aa}//FullSimplify (*根据差值移动(1,t)到(m,n),这样就是通项公式*)
- bb=Table[{m,n,T},{T,50}](*检验一下通项公式*)
复制代码
求解结果
\[\left\{\frac{1}{2} \left(-\left\lfloor \frac{1}{2} \left(\sqrt{8 T-7}+1\right)\right\rfloor ^2+\left\lfloor \frac{1}{2} \left(\sqrt{8 T-7}+1\right)\right\rfloor +2 T\right),\frac{1}{2} \left(\left\lfloor \frac{1}{2} \left(\sqrt{8 T-7}+1\right)\right\rfloor ^2+\left\lfloor \frac{1}{2} \left(\sqrt{8 T-7}+1\right)\right\rfloor -2 T+2\right)\right\}\]
{{1, 1, 1}, {1, 2, 2}, {2, 1, 3}, {1, 3, 4}, {2, 2, 5}, {3, 1, 6}, {1,
4, 7}, {2, 3, 8}, {3, 2, 9}, {4, 1, 10}, {1, 5, 11}, {2, 4,
12}, {3, 3, 13}, {4, 2, 14}, {5, 1, 15}, {1, 6, 16}, {2, 5, 17}, {3,
4, 18}, {4, 3, 19}, {5, 2, 20}, {6, 1, 21}, {1, 7, 22}, {2, 6,
23}, {3, 5, 24}, {4, 4, 25}, {5, 3, 26}, {6, 2, 27}, {7, 1, 28}, {1,
8, 29}, {2, 7, 30}, {3, 6, 31}, {4, 5, 32}, {5, 4, 33}, {6, 3,
34}, {7, 2, 35}, {8, 1, 36}, {1, 9, 37}, {2, 8, 38}, {3, 7, 39}, {4,
6, 40}, {5, 5, 41}, {6, 4, 42}, {7, 3, 43}, {8, 2, 44}, {9, 1,
45}, {1, 10, 46}, {2, 9, 47}, {3, 8, 48}, {4, 7, 49}, {5, 6, 50}} |
|