找回密码
 欢迎注册
楼主: 数学星空

[讨论] 四面体的外心-内心公式

[复制链接]
 楼主| 发表于 2015-4-26 09:58:16 | 显示全部楼层
今天看到《东方论坛》上陈都先生又贴出了此问题相关历史记录:

201504251.jpg

201504253.jpg

201504254.jpg


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2015-4-26 10:19:11 | 显示全部楼层
根据 http://blogs.ams.org/visualinsig ... ielsson-inequality/

In the comments on this blog, Greg Egan has proposed a generalized Grace–Danielsson inequality in n  dimensions. More precisely, he has shown the following. Suppose we have a smaller ball of radius r  inside a larger ball of radius \(R\)  in \(IR^n\)  . Suppose the distance between the centers of these balls is \(d\) . Then we can fit an n -simplex inside the larger ball and outside the smaller one if

\[d^2 \leqslant (R+(n−2)r)(R–nr)\]

where if the inequality is an equation the simplex may touch the surface of these balls. He conjectures that this sufficient condition is also necessary.
- See more at: http://blogs.ams.org/visualinsig ... thash.C6sYsa5Z.dpuf


To flesh out my conjecture a little more, it’s helpful to start with an equation that is satisfied by the inradius \( r\)  of an isosceles triangle with base 2b  and height h :

\[b^2 (h−2r)–hr^2=0\]

This is easy to prove from Pythagoras and similar triangles. The inradius is the radius of a circle that is tangent to all three sides of the triangle.

Now in the context of two nested spheres in R n  , the large one with radius R , the small one with radius r , and a distance of \(d\) between their centres, suppose we place a regular \((n−1)-\)simplex tangent to the small sphere, with its centre at one of the points of intersection with the axis that runs between the centres of both spheres. If we choose a scale for this \((n−1) -\)simplex so that its vertices lie on the large sphere, its circumradius will be given by the radius of the sphere of intersection between the large sphere and the hyperplane tangent to the small sphere, which is:

\[\sqrt{R^2 −(r\pm d)^2}\]

Here the sign depends on which point of intersection with the axis we use as the point of tangency. The inradius of a regular \((n−1) -\)simplex is smaller than the circumradius by a factor of \(n−1\) , so if we call that inradius b , we will have:

\[b^2 =\frac{R^2 −(r\pm d)^2}{(n−1)^2}\]

Now, suppose we turn the regular \((n−1) -\)simplex into an \(n -\)simplex by adding a point at the intersection of the axis and the large sphere that lies on the opposite side of the small sphere to the\((n−1) -\)simplex. The “altitude” of this \(n -\)simplex measured from the \((n−1) -\)simplex as its “base” will be given by:

\[h=R+(r\pm d)\]

We can construct an isosceles triangle by taking the centre of the regular \((n−1) -\)simplex as the centre of the triangle’s base, the centre of any of the \((n−2) -\)simplex faces of the regular \((n−1) -\)simplex as an endpoint of the triangle’s base, and the added point we use to create the\( n \)-simplex as the triangle’s apex. This isosceles triangle with have a half-base of b  and a height of\( h\) . What’s more, if every face of the \(n -\)simplex is tangent to the small sphere, then the radius of the small sphere, \(r\) , will be equal to the inradius of the isosceles triangle. So we have:

\[b^2 (h−2r)–hr^2 =0\]

It’s convenient to divide this through by \(h\)  and multiply by \((n−1)^2\)  , to obtain:

\[\frac{b^2(n−1)^2 (h−2r)}{h}–(n−1)^2 r^2 =0\]

Substituting in for \(b^2\)   and \(h\)  we get:

\[(R–(r\pm d))(R+(r\pm d)–2r)–(n−1)^2 r^2 =0\]

If we solve this for \(d^2\)  , we get:

\[d^2 =(R+(n−2)r)(R–nr)\]

So, this is the condition for an n -simplex with a regular (n−1) -simplex as its “base” to have all its faces tangent to the small sphere and all its vertices lying on the large sphere, given that we choose to make the “base” orthogonal to the axis running between the centres of the spheres.
- See more at: http://blogs.ams.org/visualinsig ... thash.C6sYsa5Z.dpuf


当\(n=2\)时

有Euler inequality holds::

\[d^2 \leq R(R-2r)\]

当\(n=3\)时

有Grace–Danielsson inequality holds:

\[d^2 \leq  (R+r)(R-3r)\]



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2015-4-26 10:24:35 | 显示全部楼层
201504257.png

201504256.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2015-4-26 10:36:08 | 显示全部楼层
现在的问题如何简化:

\[f=\frac{S_1S_2a_{12}^2+S_1S_3a_{13}^2+S_1S_4a_{14}^2+S_2S_3a_{23}^2+S_2S_4a_{24}^2+S_3S_4a_{34}^2}{(S_1+S_2+S_3+S_4)^2}-r(2R+3r)\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2015-4-26 10:49:45 | 显示全部楼层
又根据32#结果

设四面体$ABC-D$的四个面$BCD,ACD,ABD,ABC$的面积和外接圆半径分别为$S_i,R_i (i=1,2,3,4),$且四面体各棱长$AB=a_{12},AC=a_{13},BC=a_{23},AD=a_{14},BD=a_{24},CD=a_{34}$, 则有

$S_1S_2a_{12}^2+S_1S_3a_{13}^2+S_1S_4a_{14}^2+S_2S_3a_{23}^2+S_2S_4a_{24}^2+S_3S_4a_{34}^2$

$=(a_{14}a_{24}a_{34})/4(a_{23}a_{13}a_{12})/4(a_{12} a_{34} (1/(R_1R_2)+1/(R_3R_4))+a_{13} a_{24} (1/(R_1R_3)+1/(R_2R_4))+a_{23} a_{14} (1/(R_1R_4)+1/(R_2R_3)))$



\(S_1+S_2+S_3+S_4=\frac{V}{3r}\)

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-8-20 22:42:19 | 显示全部楼层
d.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-8-23 20:25:36 | 显示全部楼层
oi.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2017-2-15 15:16:22 | 显示全部楼层
《数学教学研究》 1995年06期

Euler公式及其不等式的三维推广
孔令恩 王敬秀

【摘要】:Euler公式及其不等式的三维推广
孔令恩(山东省枣庄师范学校277100)     王敬秀(山东省枣庄市一中277100)
在△ABC中,有著名的Euler公式其中O,I为△ABC的外、内心,R、r分别是其外接圆、内切圆半径.由(1)立得Euler不等式对既有外...

【作者单位】: 山东省枣庄师范学校   山东省枣庄市一中
【关键词】: Euler公式四面体欧拉不等式     中学数学教学      数学教学研究      三维欧氏空间   几何不等式    内切球半径   山东省枣庄市师专学报
【分类号】:G634.6

【正文快照】:
Euler公式及其不等式的三维推广

孔令恩(山东省枣庄师范学校277100)    王敬秀(山东省枣庄市一中277100)

在△ABC中,有著名的Euler公式  其中O,I为△ABC的外、内心,R、r分别是其外接圆、内切圆半径.由(1)立得  Euler不等式对既有外接
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-4-15 11:36:54 | 显示全部楼层
6.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-4-15 11:37:50 | 显示全部楼层
无标题.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-7-1 07:05 , Processed in 0.092211 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表