- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2013-12-21 00:37:47
|
显示全部楼层
关于43#的代数方程,其实可以展开为(空间五点的Cayley-Menger行列式定理)得到:(猜想)
\(AB=z,AC=y,BC=x,CD=z_1,BD=y_1,AD=x_1,AP=a,BP=b,CP=c,DP=d\)的一般关系式:
\(-a^4x^4+2a^4x^2y_1^2+2a^4x^2z_1^2-a^4y_1^4+2a^4y_1^2z_1^2-a^4z_1^4-2a^2b^2x^2x_1^2+2a^2b^2x^2y^2-2a^2b^2x^2z_1^2+2a^2b^2x_1^2y_1^2-2a^2b^2x_1^2z_1^2-2a^2b^2y^2y_1^2-
2a^2b^2y^2z_1^2-2a^2b^2y_1^2z_1^2+4a^2b^2z^2z_1^2+2a^2b^2z_1^4-2a^2c^2x^2x_1^2-2a^2c^2x^2y_1^2+2a^2c^2x^2z^2-2a^2c^2x_1^2y_1^2+2a^2c^2x_1^2z_1^2+4a^2c^2y^2y_1^2+
2a^2c^2y_1^4-2a^2c^2y_1^2z^2-2a^2c^2y_1^2z_1^2-2a^2c^2z^2z_1^2+2a^2d^2x^4+4a^2d^2x^2x_1^2-2a^2d^2x^2y^2-2a^2d^2x^2y_1^2-2a^2d^2x^2z^2-2a^2d^2x^2z_1^2-
2a^2d^2y^2y_1^2+2a^2d^2y^2z_1^2+2a^2d^2y_1^2z^2-2a^2d^2z^2z_1^2+2a^2x^4x_1^2-2a^2x^2x_1^2y_1^2-2a^2x^2x_1^2z_1^2-2a^2x^2y^2y_1^2+4a^2x^2y_1^2z_1^2-2a^2x^2z^2z_1^2+
2a^2y^2y_1^4-2a^2y^2y_1^2z_1^2-2a^2y_1^2z^2z_1^2+2a^2z^2z_1^4-b^4x_1^4+2b^4x_1^2y^2+2b^4x_1^2z_1^2-b^4y^4+2b^4y^2z_1^2-b^4z_1^4+4b^2c^2x^2x_1^2+2b^2c^2x_1^4-2b^2c^2x_1^2y^2-
2b^2c^2x_1^2y_1^2-2b^2c^2x_1^2z^2-2b^2c^2x_1^2z_1^2-2b^2c^2y^2y_1^2+2b^2c^2y^2z^2+2b^2c^2y_1^2z_1^2-2b^2c^2z^2z_1^2-2b^2d^2x^2x_1^2-2b^2d^2x^2y^2+2b^2d^2x^2z_1^2-
2b^2d^2x_1^2y^2+2b^2d^2x_1^2z^2+2b^2d^2y^4+4b^2d^2y^2y_1^2-2b^2d^2y^2z^2-2b^2d^2y^2z_1^2-2b^2d^2z^2z_1^2+2b^2x^2x_1^4-2b^2x^2x_1^2y^2-2b^2x^2x_1^2z_1^2-
2b^2x_1^2y^2y_1^2+4b^2x_1^2y^2z_1^2-2b^2x_1^2z^2z_1^2+2b^2y^4y_1^2-2b^2y^2y_1^2z_1^2-2b^2y^2z^2z_1^2+2b^2z^2z_1^4-c^4x_1^4+2c^4x_1^2y_1^2+2c^4x_1^2z^2-c^4y_1^4+
2c^4y_1^2z^2-c^4z^4-2c^2d^2x^2x_1^2+2c^2d^2x^2y_1^2-2c^2d^2x^2z^2+2c^2d^2x_1^2y^2-2c^2d^2x_1^2z^2-2c^2d^2y^2y_1^2-
2c^2d^2y^2z^2-2c^2d^2y_1^2z^2+2c^2d^2z^4+4c^2d^2z^2z_1^2+2c^2x^2x_1^4-2c^2x^2x_1^2y_1^2-2c^2x^2x_1^2z^2-2c^2x_1^2y^2y_1^2+4c^2x_1^2y_1^2z^2-2c^2x_1^2z^2z_1^2+
2c^2y^2y_1^4-2c^2y^2y_1^2z^2-2c^2y_1^2z^2z_1^2+2c^2z^4z_1^2-d^4x^4+2d^4x^2y^2+2d^4x^2z^2-d^4y^4+2d^4y^2z^2-d^4z^4+2d^2x^4x_1^2-2d^2x^2x_1^2y^2-2d^2x^2x_1^2z^2-
2d^2x^2y^2y_1^2+4d^2x^2y^2z^2-2d^2x^2z^2z_1^2+2d^2y^4y_1^2-2d^2y^2y_1^2z^2-2d^2y^2z^2z_1^2+2d^2z^4z_1^2-x^4x_1^4+2x^2x_1^2y^2y_1^2+2x^2x_1^2z^2z_1^2-y^4y_1^4+
2y^2y_1^2z^2z_1^2-z^4z_1^4=0\) (1)
若四个面面积相等,令\(x_1=x,y_1=y,z_1=z\) 代入(1)可以得到
\(-a^4x^4+2a^4x^2y^2+2a^4x^2z^2-a^4y^4+2a^4y^2z^2-a^4z^4-2a^2b^2x^4+4a^2b^2x^2y^2-4a^2b^2x^2z^2-2a^2b^2y^4-4a^2b^2y^2z^2+6a^2b^2z^4-2a^2c^2x^4-4a^2c^2x^2y^2+
4a^2c^2x^2z^2+6a^2c^2y^4-4a^2c^2y^2z^2-2a^2c^2z^4+6a^2d^2x^4-4a^2d^2x^2y^2-4a^2d^2x^2z^2-2a^2d^2y^4+4a^2d^2y^2z^2-2a^2d^2z^4+2a^2x^6-2a^2x^4y^2-2a^2x^4z^2-
2a^2x^2y^4+4a^2x^2y^2z^2-2a^2x^2z^4+2a^2y^6-2a^2y^4z^2-2a^2y^2z^4+2a^2z^6-b^4x^4+2b^4x^2y^2+2b^4x^2z^2-b^4y^4+2b^4y^2z^2-b^4z^4+6b^2c^2x^4-4b^2c^2x^2y^2-
4b^2c^2x^2z^2-2b^2c^2y^4+4b^2c^2y^2z^2-2b^2c^2z^4-2b^2d^2x^4-4b^2d^2x^2y^2+4b^2d^2x^2z^2+6b^2d^2y^4-4b^2d^2y^2z^2-2b^2d^2z^4+2b^2x^6-2b^2x^4y^2-2b^2x^4z^2-
2b^2x^2y^4+4b^2x^2y^2z^2-2b^2x^2z^4+2b^2y^6-2b^2y^4z^2-2b^2y^2z^4+2b^2z^6-c^4x^4+2c^4x^2y^2+2c^4x^2z^2-c^4y^4+2c^4y^2z^2-c^4z^4-2c^2d^2x^4+4c^2d^2x^2y^2-
4c^2d^2x^2z^2-2c^2d^2y^4-4c^2d^2y^2z^2+6c^2d^2z^4+2c^2x^6-2c^2x^4y^2-2c^2x^4z^2-2c^2x^2y^4+4c^2x^2y^2z^2-2c^2x^2z^4+2c^2y^6-2c^2y^4z^2-2c^2y^2z^4+2c^2z^6-
d^4x^4+2d^4x^2y^2+2d^4x^2z^2-d^4y^4+2d^4y^2z^2-d^4z^4+2d^2x^6-2d^2x^4y^2-2d^2x^4z^2-2d^2x^2y^4+4d^2x^2y^2z^2-2d^2x^2z^4+2d^2y^6-2d^2y^4z^2-2d^2y^2z^4+2d^2z^6-
x^8+2x^4y^4+2x^4z^4-y^8+2y^4z^4-z^8=0\) (2)
很奇怪:41#得到的答案:
\(x^8+y^8+z^8-2x^4y^4-2y^4z^4-2z^4x^4+(a^4+b^4+c^4+d^4)(x^4-2x^2y^2-2x^2z^2+y^4-2y^2z^2+z^4)+(2a^2b^2+2a^2c^2+2a^2d^2+2b^2c^2+2b^2d^2+2c^2d^2)
(x^4+2x^2y^2+2x^2z^2+y^4+2y^2z^2+z^4)+(2(a^2+b^2+c^2+d^2))(-x^6+x^4y^2+x^4z^2+x^2y^4-2x^2y^2z^2+x^2z^4-y^6+y^4z^2+y^2z^4-z^6)-(8(a^2b^2+c^2d^2))(x^4+y^2z^2)-
(8(a^2c^2+b^2d^2))(x^2z^2+y^4)-(8(a^2d^2+b^2c^2))(x^2y^2+z^4)=0\) (3) 与(2)并不相等,
当\(x=y=z=1,a=b=c=d=\frac{\sqrt{6}}{4}\)时,(2)和(3)均成立,是否(3)计算有误?
若为垂心四面体,设\(x^2+x_1^2=y^2+y_1^2=z^2+z_1^2=t^2\)则
\((-x^4+2x^2y^2+2z^2x^2-y^4+2y^2z^2-z^4)t^4+(4a^4x^2-4a^2b^2x^2-4a^2b^2y^2+4a^2b^2z^2-4a^2c^2x^2+4a^2c^2y^2-4a^2c^2z^2+6a^2x^4-4a^2x^2y^2-4a^2x^2z^2-2a^2y^4+4a^2y^2z^2-2a^2z^4+4b^4y^2+4b^2c^2x^2-
4b^2c^2y^2-4b^2c^2z^2-2b^2x^4-4b^2x^2y^2+4b^2x^2z^2+6b^2y^4-4b^2y^2z^2-2b^2z^4+4c^4z^2-2c^2x^4+4c^2x^2y^2-4c^2x^2z^2-2c^2y^4-4c^2y^2z^2+6c^2z^4+2d^2x^4-
4d^2x^2y^2-4d^2x^2z^2+2d^2y^4-4d^2y^2z^2+2d^2z^4+2x^6-2x^4y^2-2x^4z^2-2x^2y^4-2x^2z^4+2y^6-2y^4z^2-2y^2z^4+2z^6)t^2+4a^2c^2x^2z^2-4b^2d^2x^2z^2+4b^2x^2y^2z^2-4a^2d^2y^2z^2+4a^2x^2y^2z^2-2a^2d^2x^4-2a^2b^2z^4-4c^2d^2x^2y^2+4c^2x^2y^2z^2-c^4z^4-d^4x^4-d^4y^4-d^4z^4-
2a^2x^6+2a^2y^6+2a^2z^6-b^4x^4-b^4z^4+2b^2x^6-2b^2y^6+2b^2z^6-c^4x^4-c^4y^4+2c^2x^6+2c^2y^6-2c^2z^6-2d^2x^6-2d^2y^6-2d^2z^6+2a^2c^2x^4+2x^4y^4+2z^4x^4+2y^4z^4-
a^4x^4-a^4y^4-a^4z^4+2a^2d^2y^4+2a^2d^2z^4-2a^2x^4y^2-2a^2x^4z^2+2a^2x^2y^4+2a^2x^2z^4-2a^2y^4z^2-2a^2y^2z^4-2b^4x^2y^2+2b^4x^2z^2-2b^4y^2z^2+2a^2b^2x^4-
b^4y^4+2b^2c^2z^4+2b^2d^2x^4+2b^2d^2z^4+2b^2x^4y^2-2b^2x^4z^2-2b^2x^2y^4-2b^2x^2z^4-2b^2y^4z^2+2b^2y^2z^4+2c^4x^2y^2-2c^4x^2z^2-2c^4y^2z^2+2c^2d^2x^4+
2c^2d^2y^4-2c^2x^4y^2+2c^2x^4z^2-2c^2x^2y^4-2c^2x^2z^4+2c^2y^4z^2-2c^2y^2z^4+2d^2x^4y^2+2d^2x^4z^2-2a^2c^2y^4+2a^2b^2y^4-2a^4x^2z^2+2a^4y^2z^2-2a^4x^2y^2+
2a^2c^2z^4+2d^2x^2y^4+2d^2x^2z^4+2d^2y^4z^2+2d^2y^2z^4-x^8-y^8-z^8+4a^2b^2x^2y^2+4d^2x^2y^2z^2+4b^2c^2y^2z^2-2b^2c^2x^4+2b^2c^2y^4+2d^4x^2z^2+2d^4y^2z^2-
2b^2d^2y^4-2c^2d^2z^4+2d^4x^2y^2=0\)
若为正四面体,即\(x=y=z=x_1=y_1=z_1=t\),则
\(3t^4+(-2a^2-2b^2-2c^2-2d^2)t^2+3a^4-2a^2b^2-2a^2c^2-2a^2d^2+3b^4-2b^2c^2-2b^2d^2+3c^4-2c^2d^2+3d^4=0\)
若\(x_1\*x=y_1\*y=z_1\*z=t\),则(注:此特例即http://bbs.emath.ac.cn/forum.php?mod=viewthread&tid=5190&extra=page%3D2&page=6
mathe推导的58#的结论)
\((-a^4x^4y^4+2a^4x^4y^2z^2-a^4x^4z^4+2a^2b^2x^4y^4-2a^2b^2x^4y^2z^2-2a^2b^2x^2y^4z^2+2a^2b^2x^2y^2z^4-2a^2c^2x^4y^2z^2+2a^2c^2x^4z^4+2a^2c^2x^2y^4z^2-
2a^2c^2x^2y^2z^4+4a^2x^6y^2z^2-2a^2x^4y^4z^2-2a^2x^4y^2z^4-b^4x^4y^4+2b^4x^2y^4z^2-b^4y^4z^4+2b^2c^2x^4y^2z^2-2b^2c^2x^2y^4z^2-2b^2c^2x^2y^2z^4+2b^2c^2y^4z^4-
2b^2x^4y^4z^2+4b^2x^2y^6z^2-2b^2x^2y^4z^4-c^4x^4z^4+2c^4x^2y^2z^4-c^4y^4z^4-2c^2x^4y^2z^4-2c^2x^2y^4z^4+4c^2x^2y^2z^6+3x^4y^4z^4)t^4+(2a^4x^6y^4z^2+2a^4x^6y^2z^4-2a^2b^2x^6y^4z^2-2a^2b^2x^4y^6z^2-2a^2c^2x^6y^2z^4-2a^2c^2x^4y^2z^6-2a^2d^2x^6y^4z^2-2a^2d^2x^6y^2z^4+2a^2d^2x^4y^6z^2+
2a^2d^2x^4y^2z^6-2a^2x^6y^4z^4+2b^4x^4y^6z^2+2b^4x^2y^6z^4-2b^2c^2x^2y^6z^4-2b^2c^2x^2y^4z^6+2b^2d^2x^6y^4z^2-2b^2d^2x^4y^6z^2-2b^2d^2x^2y^6z^4+
2b^2d^2x^2y^4z^6-2b^2x^4y^6z^4+2c^4x^4y^2z^6+2c^4x^2y^4z^6+2c^2d^2x^6y^2z^4-2c^2d^2x^4y^2z^6+2c^2d^2x^2y^6z^4-2c^2d^2x^2y^4z^6-2c^2x^4y^4z^6-
2d^2x^6y^4z^4-2d^2x^4y^6z^4-2d^2x^4y^4z^6t^2-a^4x^8y^4z^4+2a^2b^2x^6y^6z^4+2a^2c^2x^6z^6y^4+2a^2d^2x^8y^4z^4-2a^2d^2x^6y^6z^4-2a^2d^2x^6z^6y^4-
b^4y^8z^4x^4+2b^2c^2y^6z^6x^4-2b^2d^2x^6y^6z^4+2b^2d^2y^8z^4x^4-2b^2d^2y^6z^6x^4-c^4z^8y^4x^4-2c^2d^2x^6z^6y^4-2c^2d^2y^6z^6x^4+2c^2d^2z^8y^4x^4-
d^4x^8y^4z^4+2d^4x^6y^6z^4+2d^4x^6z^6y^4-d^4y^8z^4x^4+2d^4y^6z^6x^4-d^4z^8y^4x^4+4d^2x^6y^6z^6=0\)
|
|