- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19891
- 在线时间
- 小时
|
楼主 |
发表于 2014-2-17 19:13:22
|
显示全部楼层
在9#我已提到,其实不需要太多计算
分别在四边形\(APQB,APQC,BPQC\)中利用11#公式可得
\((-v_1^2+v_2^2+x^2)^2u_2^2+(-u_1^2+u_2^2+x^2)^2v_2^2+(-c^2+u_2^2+v_2^2)^2x^2-(-v_1^2+v_2^2+x^2)(-u_1^2+u_2^2+x^2)(-c^2+u_2^2+v_2^2)-4u_2^2v_2^2x^2=0\)
\((-w_1^2+w_2^2+x^2)^2u_2^2+(-b^2+u_2^2+w_2^2)^2x^2+(-u_1^2+u_2^2+x^2)^2w_2^2-(-w_1^2+w_2^2+x^2)(-b^2+u_2^2+w_2^2)(-u_1^2+u_2^2+x^2)-4u_2^2x^2w_2^2=0\)
\((-a^2+v_2^2+w_2^2)^2x^2+(-w_1^2+w_2^2+x^2)^2v_2^2+(-v_1^2+v_2^2+x^2)^2w_2^2-(-a^2+v_2^2+w_2^2)(-w_1^2+w_2^2+x^2)(-v_1^2+v_2^2+x^2)-4x^2v_2^2w_2^2=0\)
将以上三式相加就可以得到我们需要的结果(为了得到比较对称的一种做法)
\(-a^2v_2^2w_1^2+a^2v_1^2w_1^2+a^2v_2^2w_2^2-a^2v_1^2w_2^2-v_1^2v_2^2w_1^2-v_1^2v_2^2w_2^2-v_1^2w_1^2w_2^2-v_2^2w_1^2w_2^2+v_1^2u_2^4+v_2^2u_1^4+v_2^4u_1^2+w_2^4u_1^2+w_1^2u_2^4+u_2^2v_1^4+
u_2^2w_1^4+w_2^2u_1^4+(a^2+b^2+c^2)x^4+(a^4-a^2v_1^2-a^2v_2^2-a^2w_1^2-a^2w_2^2+b^4-b^2u_1^2-b^2u_2^2-b^2w_1^2-b^2w_2^2+c^4-c^2u_1^2-c^2u_2^2-c^2v_1^2-c^2v_2^2+2u_1^2u_2^2-u_1^2v_2^2-
u_1^2w_2^2-u_2^2v_1^2-u_2^2w_1^2+2v_1^2v_2^2-v_1^2w_2^2-v_2^2w_1^2+2w_1^2w_2^2)x^2+v_1^4w_2^2+v_1^2w_2^4+v_2^4w_1^2+v_2^2w_1^4+w_2^2b^2u_2^2+w_1^2b^2u_1^2-w_2^2w_1^2u_1^2-w_1^2b^2u_2^2-
w_1^2u_2^2u_1^2-u_2^2v_2^2v_1^2-w_2^2b^2u_1^2-v_2^2u_2^2u_1^2-w_2^2u_2^2u_1^2-v_2^2u_1^2c^2+u_2^2v_2^2c^2+v_1^2u_1^2c^2-v_1^2u_1^2u_2^2-v_1^2u_1^2v_2^2-v_1^2u_2^2c^2-u_2^2w_2^2w_1^2=0\)
我们可以利用下面数据验证以上公式的正确性
\(a = 1, b = 1, c = 1, u_1 = \frac{\sqrt{3}}{2}, v_1 = \frac{1}{2}, w_1 = \frac{1}{2}, u_2 = \frac{\sqrt{3}}{3}, v_2 =\frac{\sqrt{3}}{3}, w_2 =\frac{\sqrt{3}}{3}, x =\frac{\sqrt{3}}{6}\)
\(a = 3, b = 4, c = 5, u_1 =\frac{16}{5}, v_1 = \frac{9}{5}, w_1 =\frac{12}{5}, u_2 =\frac{5}{2}, v_2 =\frac{5}{2}, w_2 =\frac{5}{2}, x =\frac{7}{10}\)
上面的公式我们可以称为‘心距万能公式’,下面是具体的应用。 |
|