找回密码
 欢迎注册
楼主: 数学星空

[讨论] 三角形两内点间距

[复制链接]
 楼主| 发表于 2014-2-16 21:18:20 | 显示全部楼层
关于9#提到的内点\(PA=x,PB=y,PC=z\),还有一个很简洁的表达式(值得大家共赏)

\[(-a^2+y^2+z^2)^2x^2+(-b^2+x^2+z^2)^2y^2+(-c^2+x^2+y^2)^2z^2-(-a^2+y^2+z^2)(-b^2+x^2+z^2)(-c^2+x^2+y^2)-4x^2y^2z^2=0\]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-2-17 15:10:42 | 显示全部楼层
2#和4#被我编辑过,去掉了2#中的图片,将4#的图片变成了Latex公式。
郭老板说过,尽量不要用图片搞公式,本坛公式表达已经很强大了。

建议星空研究一下将这个主题下的公式化成对称而且简明的行列式。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-2-17 16:43:04 | 显示全部楼层
受 hujunhua 启发,可将 \( PABC \) (或 \( QABC \) )看做是空间四面体,只是其体积 \( V=0 \) :
\[ \begin{vmatrix}
0 & c^2 & b^2 & u_i^2 & 1 \\
c^2 & 0 & a^2 & v_i^2 & 1 \\
b^2 & a^2 & 0 & w_i^2 & 1 \\
u_i^2 & v_i^2 & w_i^2 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{vmatrix} = 288*V_i^2 = 0 \quad(i=1,2) \]

点评

其实,在 5# 里 creasson 已提到。  发表于 2014-2-17 17:06
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-2-17 17:11:11 | 显示全部楼层
其实,northwolves 在 6# 里的方法就可以解出来了(里面的公式排版有点小问题),
楼主可能追求的是一种更“美”的表达式。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-2-17 19:08:34 | 显示全部楼层
数学星空 发表于 2014-2-16 20:30
对于2#的方程,我们可以得到
\(\alpha = -(a^4u_1^2-a^2b^2v_1^2-a^2c^2w_1^2-a^2u_1^4+a^2v_1^2w_1^2+b^2 ...

这一定是你计算上的失误所致,即使我在2L所给答案是错的,在4L所给的式子也决不会错.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-2-17 19:13:22 | 显示全部楼层
在9#我已提到,其实不需要太多计算

分别在四边形\(APQB,APQC,BPQC\)中利用11#公式可得

\((-v_1^2+v_2^2+x^2)^2u_2^2+(-u_1^2+u_2^2+x^2)^2v_2^2+(-c^2+u_2^2+v_2^2)^2x^2-(-v_1^2+v_2^2+x^2)(-u_1^2+u_2^2+x^2)(-c^2+u_2^2+v_2^2)-4u_2^2v_2^2x^2=0\)

\((-w_1^2+w_2^2+x^2)^2u_2^2+(-b^2+u_2^2+w_2^2)^2x^2+(-u_1^2+u_2^2+x^2)^2w_2^2-(-w_1^2+w_2^2+x^2)(-b^2+u_2^2+w_2^2)(-u_1^2+u_2^2+x^2)-4u_2^2x^2w_2^2=0\)

\((-a^2+v_2^2+w_2^2)^2x^2+(-w_1^2+w_2^2+x^2)^2v_2^2+(-v_1^2+v_2^2+x^2)^2w_2^2-(-a^2+v_2^2+w_2^2)(-w_1^2+w_2^2+x^2)(-v_1^2+v_2^2+x^2)-4x^2v_2^2w_2^2=0\)

将以上三式相加就可以得到我们需要的结果(为了得到比较对称的一种做法)

\(-a^2v_2^2w_1^2+a^2v_1^2w_1^2+a^2v_2^2w_2^2-a^2v_1^2w_2^2-v_1^2v_2^2w_1^2-v_1^2v_2^2w_2^2-v_1^2w_1^2w_2^2-v_2^2w_1^2w_2^2+v_1^2u_2^4+v_2^2u_1^4+v_2^4u_1^2+w_2^4u_1^2+w_1^2u_2^4+u_2^2v_1^4+
u_2^2w_1^4+w_2^2u_1^4+(a^2+b^2+c^2)x^4+(a^4-a^2v_1^2-a^2v_2^2-a^2w_1^2-a^2w_2^2+b^4-b^2u_1^2-b^2u_2^2-b^2w_1^2-b^2w_2^2+c^4-c^2u_1^2-c^2u_2^2-c^2v_1^2-c^2v_2^2+2u_1^2u_2^2-u_1^2v_2^2-
u_1^2w_2^2-u_2^2v_1^2-u_2^2w_1^2+2v_1^2v_2^2-v_1^2w_2^2-v_2^2w_1^2+2w_1^2w_2^2)x^2+v_1^4w_2^2+v_1^2w_2^4+v_2^4w_1^2+v_2^2w_1^4+w_2^2b^2u_2^2+w_1^2b^2u_1^2-w_2^2w_1^2u_1^2-w_1^2b^2u_2^2-
w_1^2u_2^2u_1^2-u_2^2v_2^2v_1^2-w_2^2b^2u_1^2-v_2^2u_2^2u_1^2-w_2^2u_2^2u_1^2-v_2^2u_1^2c^2+u_2^2v_2^2c^2+v_1^2u_1^2c^2-v_1^2u_1^2u_2^2-v_1^2u_1^2v_2^2-v_1^2u_2^2c^2-u_2^2w_2^2w_1^2=0\)

我们可以利用下面数据验证以上公式的正确性

\(a = 1, b = 1, c = 1, u_1 = \frac{\sqrt{3}}{2}, v_1 = \frac{1}{2}, w_1 = \frac{1}{2}, u_2 = \frac{\sqrt{3}}{3}, v_2 =\frac{\sqrt{3}}{3}, w_2 =\frac{\sqrt{3}}{3}, x =\frac{\sqrt{3}}{6}\)

\(a = 3, b = 4, c = 5, u_1 =\frac{16}{5}, v_1 = \frac{9}{5}, w_1 =\frac{12}{5}, u_2 =\frac{5}{2}, v_2 =\frac{5}{2}, w_2 =\frac{5}{2}, x =\frac{7}{10}\)

上面的公式我们可以称为‘心距万能公式’,下面是具体的应用。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-2-17 19:28:36 | 显示全部楼层
我们先计算大家熟知的外心\(O\),内心\(I\),垂心\(H\),重心\(G\)两两之间的心距公式

\(AI =\frac{\sqrt{bc}}{\sqrt{\frac{p-a}{p}}}, BI =\frac{\sqrt{ac}}{\sqrt{\frac{p-b}{p}}}, CI = \frac{\sqrt{ab}}{\sqrt{\frac{p-c}{p}}}\)

\(AH =\frac{a(-a^2+b^2+c^2)}{\sqrt{-a^4+2a^2b^2+2a^2c^2-b^4+2b^2c^2-c^4}}, BH =\frac{b(a^2-b^2+c^2)}{\sqrt{-a^4+2a^2b^2+2a^2c^2-b^4+2b^2c^2-c^4}}, CH =\frac{c(a^2+b^2-c^2)}{\sqrt{-a^4+2a^2b^2+2a^2c^2-b^4+2b^2c^2-c^4}}\)

\(AG = \frac{\sqrt{2(b^2+c^2)-a^2}}{3}, BG =\frac{\sqrt{2(a^2+c^2)-b^2}}{3}, CG =\frac{\sqrt{2(a^2+b^2)-c^2}}{3}\)

\(AO = \frac{abc}{\sqrt{-a^4+2a^2b^2+2a^2c^2-b^4+2b^2c^2-c^4}}, BO =\frac{abc}{\sqrt{-a^4+2a^2b^2+2a^2c^2-b^4+2b^2c^2-c^4}}, CO =\frac{abc}{\sqrt{-a^4+2a^2b^2+2a^2c^2-b^4+2b^2c^2-c^4}}\)

分别代入‘心距万能公式’得到

1.  \(9(a+b+c)(-b+a-c)(b+a-c)(a-b+c)HG^2+4b^6-4a^4b^2-4b^4c^2-4a^4c^2-4b^2c^4+4c^6+4a^6-4a^2b^4+12a^2b^2c^2-4a^2c^4=0\)

2.  \((a+b+c)(-b+a-c)(b+a-c)(a-b+c)HO^2+b^6-a^2b^4-a^4b^2+a^6-b^4c^2+3a^2b^2c^2-a^4c^2-b^2c^4-a^2c^4+c^6=0\)

3.  \((a+b+c)(-b+a-c)(b+a-c)(a-b+c)HI^2-c^5a-a^5c-ba^5-bc^5-b^5c-b^5a-a^4b^2-b^4c^2-a^4c^2-b^2c^4-a^2b^4-a^2c^4+2b^3c^3+2a^3c^3+2b^3a^3+b^6+c^6+a^6+3bca^4-2bc^3a^2+3b^4ac-2a^3b^2c-2ba^3c^2+6a^2b^2c^2-2b^2c^3a-2b^3ac^2-2b^3ca^2+3bac^4=0\)

4.  \(9(a+b+c)(-b+a-c)(b+a-c)(a-b+c)OG^2+b^6-a^2b^4-a^4b^2+a^6-b^4c^2+3a^2b^2c^2-a^4c^2-b^2c^4-a^2c^4+c^6=0\)

5.  \((9b+9a+9c)GI^2+b^3-2b^2a-2ba^2+a^3-2b^2c+9bca-2a^2c-2bc^2-2ac^2+c^3=0\)

6. \((a+b+c)(-b+a-c)(b+a-c)(a-b+c)OI^2+bca(a^3-a^2b-a^2c-ab^2+3abc-ac^2+b^3-b^2c-bc^2+c^3)=0\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-2-17 19:45:03 | 显示全部楼层
对于以上结果:

我们代入\(a=y+z,b=x+z,c=x+y\),则有

1.  \(-144xzy(y+z+x)HG^2-56z^4yx-40x^3zy^2-40x^3z^2y-40z^3y^2x-40z^3yx^2-40zy^3x^2-56x^4zy-56y^4xz-24z^2y^2x^2-40z^2y^3x+36x^4z^2+72x^3z^3+36x^2z^4+36z^4y^2+72z^3y^3+36y^4x^2+36y^4z^2+36x^4y^2+72x^3y^3=0\)

2.  \(-16xzy(y+z+x)HO^2+9x^4z^2-14z^4yx-10x^3zy^2-10x^3z^2y-10z^3y^2x-10z^3yx^2-10zy^3x^2-14x^4zy-14y^4xz-6z^2y^2x^2-10z^2y^3x+9x^2z^4+9z^4y^2+18z^3y^3+18x^3z^3+9y^4z^2+9x^4y^2+18x^3y^3+9y^4x^2=0\)

3.  \(-16xzy(y+z+x)HI^2-8z^4yx-8x^3zy^2-8x^3z^2y-8z^3y^2x-8z^3yx^2-8zy^3x^2-8x^4zy-8y^4xz+24z^2y^2x^2-8z^2y^3x+4x^4z^2+8x^3z^3+4x^2z^4+4z^4y^2+8z^3y^3+4y^4x^2+4y^4z^2+4x^4y^2+8x^3y^3=0\)

4.  \(-144xzy(y+z+x)OG^2-14z^4yx-10x^3zy^2-10x^3z^2y-10z^3y^2x-10z^3yx^2-10zy^3x^2-14x^4zy-14y^4xz-6z^2y^2x^2-10z^2y^3x+9x^4z^2+18x^3z^3+9x^2z^4+9z^4y^2+18z^3y^3+9y^4x^2+9y^4z^2+9x^4y^2+18x^3y^3=0\)

5.  \((18x+18z+18y)GI^2-6xzy-2x^3-2z^3-2y^3+2x^2z+2xz^2+2z^2y+2zy^2+2x^2y+2xy^2=0\)

6.  \(-16xzy(y+z+x)OI^2+(x+z)(x+y)(z+y)(x^2y+x^2z+xy^2-6xyz+xz^2+y^2z+yz^2)=0\)

若以\(R,r,S\)表示心距公式

\(9HG^2r^2-36R^2r^2-32Rr^3-8r^4+8S^2=0\)

\(HO^2r^2-9R^2r^2-8Rr^3-2r^4+2S^2=0\)

\(HI^2r^2-4R^2r^2-4Rr^3-3r^4+S^2=0\)

\(9OG^2r^2-9R^2r^2-8Rr^3-2r^4+2S^2=0\)

\(9GI^2r^2+16Rr^3-5r^4-S^2=0\)

\( OI^2-R^2+2Rr=0\)

若以\(R,r,p\)表示心距公式

\(9HG^2-36R^2-32Rr+8p^2-8r^2=0\)

\(HO^2-9R^2-8Rr+2p^2-2r^2=0\)

\(HI^2-4R^2-4Rr+p^2-3r^2=0\)

\(9OG^2-9R^2-8Rr+2p^2-2r^2=0\)

\(9GI^2+16Rr-p^2-5r^2\)

\(OI^2-R^2+2Rr=0\)



\(p=\frac{a+b+c}{2}\)为半周长,

\(S=\frac{\sqrt{2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4}}{4}\)为\(\triangle ABC\)面积

\(R=\frac{abc}{\sqrt{2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4}}\)为\(\triangle ABC\)外接圆半径

\(r=\frac{\sqrt{2a^2b^2+2a^2c^2+2b^2c^2-a^4-b^4-c^4}}{2(a+b+c)}\)为\(\triangle ABC\)内切圆半径

上面的计算利用了下面公式

\(s_1=a+b+c=2p\)

\(s_2=ab+ac+bc=\frac{4Rr^3+r^4+S^2}{r^2}=4Rr+p^2+r^2\)

\(s_3=abc=4RS=4Rpr\)


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-2-17 20:17:45 | 显示全部楼层
我们可以利用‘万能心距公式’计算‘陈都提出的完全心距公式(他得到的公式都很美)’

1.  三个旁心\(O_1,O_2,O_3\)

2.  费马点\(F\)

3.  九点圆圆心\(L\)  (为防止代号重复取Euler 中的L)

4.  正负等角中心\(E,F\),具体可见三角形正负等角中心间距
http://bbs.emath.ac.cn/thread-5094-1-1.html   1#陈都定义
-------------------------------------------------------------------------------------------
为了防止与费马点\(F\)重复定义,后面将正负等角点重新定义为\(E_1,E_2\),其实\(E_1\)点就是广义的费马点\(F\)

5.  Steiner椭圆焦点\(F_1,F_2\),具体可见
椭圆内接N边形的最大面积
http://bbs.emath.ac.cn/forum.php ... 67&fromuid=1455

6.正负等力点\(S,T\),可见
http://bbs.emath.ac.cn/thread-5094-3-1.html     28#陈都定义

7...

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-2-17 21:48:35 | 显示全部楼层
以前我写过一篇小短文,对于你所提的绝大多数几何问题,是可以容易解决的。后来知道国外也早有人用重心坐标解决几何问题的,并且给出了几千个点的重心坐标,可惜始终没有流行开来。无毒史那一套建立在复数+仿射方法上的系统,大约也是正确的,但是他的东西实在古怪,运算过程又隐于软件中,加上他梦呓般说话显得古老,倒是乏人问津。无论怎样,都可以看到一个很明确的趋势,几何是在与代数融合。解析几何,三角函数,复数,射影几何都是将几何对象转化成代数。代数的发展状况直接制约着几何的发展。当然,几何直观上的优势还是有的,能给人以灵感上的启迪创造,但是就初等几何而言,似乎已经很有限了。
面积坐标与体积坐标之应用.pdf (127.8 KB, 下载次数: 42)
文中一些论述可能有失偏颇,大约是令人不快的,这仅是个人的观点,各位倒无须放在心上,两日后我会删除这段回复。

点评

蛮好的,别删除,保留着吧。  发表于 2014-2-18 08:12
方法有千万个,固然也重要!不论代数的还是几何,我们的目的是给出所有不太熟悉的结论。先给出最终答案,然后讨论是否可以有更完美的形式来表达,例如陈都列出的公式就值得推广。  发表于 2014-2-17 22:28

评分

参与人数 1金币 +12 贡献 +12 经验 +12 鲜花 +12 收起 理由
数学星空 + 12 + 12 + 12 + 12 很给力!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-23 05:54 , Processed in 0.027273 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表