- 注册时间
- 2009-2-12
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 25094
- 在线时间
- 小时
|
我发现这个图的外轮廓 是一个 等边的九边形,但无法做到正九边形.
\[\left(
\begin{array}{c}
\{\text{A},\{0,0\}\} \\
\left\{\text{B},\left\{\sin \left(\frac{1}{6} (\pi -6 \theta )\right),\cos \left(\frac{1}{6} (\pi -6 \theta )\right)\right\}\right\} \\
\left\{\text{C},\left\{\sin \left(\theta +\frac{\pi }{6}\right),-\cos \left(\theta +\frac{\pi }{6}\right)\right\}\right\} \\
\{\text{D},\{1,0\}\} \\
\left\{\text{E},\left\{\frac{1}{2},\frac{\sqrt{3}}{2}\right\}\right\} \\
\{\text{F},\{2 \cos (\theta ),2 \sin (\theta )\}\} \\
\left\{\text{G},\left\{\frac{1}{2} \left(\sqrt{3} \sin (\theta )+3 \cos (\theta )\right),\frac{1}{2} \left(3 \sin (\theta )-\sqrt{3} \cos (\theta )\right)\right\}\right\} \\
\left\{\text{H},\left\{\sqrt{3} \cos \left(\theta +\frac{\pi }{6}\right),\sqrt{3} \sin \left(\theta +\frac{\pi }{6}\right)\right\}\right\} \\
\left\{\text{I},\left\{2 \cos (\theta )+\frac{1}{2},\frac{1}{2} \left(4 \sin (\theta )+\sqrt{3}\right)\right\}\right\} \\
\{\text{J},\{2 \cos (\theta )+1,2 \sin (\theta )\}\} \\
\left\{\text{K},\left\{\frac{1}{2} \left(\sqrt{3} \sin (\theta )+3 \cos (\theta )+1\right),2 \sqrt{3} \sin \left(\frac{\theta }{2}\right) \cos \left(\frac{1}{6} (\pi -3 \theta )\right)\right\}\right\} \\
\left\{\text{L},\left\{\frac{1}{2} \left(\sqrt{3} \sin (\theta )+3 \cos (\theta )+2\right),\frac{1}{2} \left(3 \sin (\theta )-\sqrt{3} \cos (\theta )\right)\right\}\right\} \\
\left\{\text{M},\left\{\sqrt{3} \cos \left(\theta +\frac{\pi }{6}\right)+1,\sqrt{3} \sin \left(\theta +\frac{\pi }{6}\right)\right\}\right\} \\
\left\{\text{N},\left\{\sqrt{3} \cos \left(\theta +\frac{\pi }{6}\right)+\frac{1}{2},\frac{1}{2} \sqrt{3} \left(2 \sin \left(\theta +\frac{\pi }{6}\right)+1\right)\right\}\right\} \\
\left\{\text{O},\left\{\sin \left(\theta +\frac{\pi }{6}\right)+\frac{1}{2},2 \sin \left(\frac{\theta }{2}\right) \sin \left(\frac{1}{6} (3 \theta +\pi )\right)\right\}\right\} \\
\left\{\text{P},\left\{\sin \left(\frac{1}{6} (\pi -6 \theta )\right)+1,\cos \left(\frac{1}{6} (\pi -6 \theta )\right)\right\}\right\} \\
\left\{\text{Q},\left\{\sin \left(\theta +\frac{\pi }{6}\right)+1,-\cos \left(\theta +\frac{\pi }{6}\right)\right\}\right\} \\
\left\{\text{R},\left\{\sin \left(\frac{1}{6} (\pi -6 \theta )\right)+\frac{1}{2},2 \cos \left(\frac{1}{6} (\pi -3 \theta )\right) \cos \left(\frac{\theta }{2}\right)\right\}\right\} \\
\{\text{S},\{\cos (\theta ),\sin (\theta )\}\} \\
\left\{\text{T},\left\{\cos (\theta )+\frac{1}{2},\sin (\theta )+\frac{\sqrt{3}}{2}\right\}\right\} \\
\{\text{U},\{\cos (\theta )+1,\sin (\theta )\}\} \\
\end{array}
\right)\] |
|