找回密码
 欢迎注册
楼主: mathe

[转载] 步长随机的行走问题

[复制链接]
 楼主| 发表于 2009-6-23 09:29:41 | 显示全部楼层
E(s)=2s+2/3+\sum_{k=1}^{\infty}2(\frac{\sinb_k}{b_k})^s \Re \frac{e^{i s b_k}}{1-\frac{b_k}{\sin b_k}e^{-i b_k}},这里的b_k是方程\frac{x}{\tan x}+\ln\frac{\sin x}{x}=1的第k个正根。 Buffalo 发表于 2009-6-22 13:00
利用56#的结果试着用Pari/Gp计算了一下,可以结果同我前面的http://bbs.emath.ac.cn/viewthrea ... &fromuid=20#pid9476 的不匹配.也就是说,公式应该是错误的.
  1. rr(k)=
  2. {
  3. solve(x=2*k*Pi+0.00000001,(2*k+0.5)*Pi-0.0000000001,x/tan(x)+log(sin(x)/x)-1.0)
  4. }
  5. get_roots()=
  6. {
  7. local(m);
  8. m=vector(100);
  9. for(u=1,100,m[u]=rr(u));
  10. m
  11. }
  12. uu(b,s)=
  13. {
  14. 2*(sin(b)/b)^s*(cos(s*b)-b/sin(b)*cos(b+s*b))/((1+(b/sin(b))^2)-2*b*cos(b)/sin(b))
  15. }
  16. get_sum(x,t)=
  17. {
  18. local(s);
  19. s=2*t+2.0/3.0;
  20. for(u=1,100,
  21. s+=uu(x[u],t)
  22. );
  23. s
  24. }
  25. list_u()=
  26. {
  27. local(x,y);
  28. x=get_roots();
  29. y=vector(10);
  30. for(u=1,10,
  31. y[u]=get_sum(x,u);
  32. );
  33. y
  34. }
复制代码
%6 = [2.717779058226940366773287667, 4.670774261125104178254149565, 6.6665656399 73812596287232300, 8.666604490032718750525612268, 10.66666206862241123307707308, 12.66666714137812140131379724, 14.66666678152214344981057189, 16.66666667042688 782366234715, 18.66666666527032134895552172, 20.66666666647631880061416309]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-23 09:44:42 | 显示全部楼层
好像是计算精度的问题,计算到一千项好像结果要好一些 %13 = [2.718231205947550153848983691, 4.670774270459126122717905542, 6.666565639 556316686364696724, 8.666604490032695437541096739, 10.66666206862241185801255092 , 12.66666714137812140137193575, 14.66666678152214344980946003, 16.6666666704268 8782366234700, 18.66666666527032134895552172, 20.66666666647631880061416309]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-23 09:52:34 | 显示全部楼层
利用56#的结果试着用Pari/Gp计算了一下,可以结果同我前面的http://bbs.emath.ac.cn/viewthrea ... &fromuid=20#pid9476 的不匹配.也就是说,公式应该是错误的. rr(k)= { solve(x=2*k*Pi+0.0 ... mathe 发表于 2009-6-23 09:29
公式都抄错了,结果怎么可能正确? 这个公式很明显地快速收敛,不需要很多项就可以得到高精度结果。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-23 10:08:31 | 显示全部楼层
的确是计算精度的问题.在s=1的时候收敛很慢.但是对于比较大的s的确收敛的比较快
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-23 10:12:08 | 显示全部楼层
的确是计算精度的问题.在s=1的时候收敛很慢.但是对于比较大的s的确收敛的比较快 mathe 发表于 2009-6-23 10:08
嫌收敛速度慢可以用加速收敛公式处理一下,直接加效率是不高。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-23 10:13:35 | 显示全部楼层
很正常,s=1时应该是条件收敛,所以收敛速度很慢.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-23 10:15:35 | 显示全部楼层
嫌收敛速度慢可以用加速收敛公式处理一下,直接加效率是不高。 Buffalo 发表于 2009-6-23 10:12
我只是试验一下. 你用的是哪方面的只是推导的?我感觉应该是我不了解的知识,比如统计方面的
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-23 10:17:49 | 显示全部楼层
本帖最后由 Buffalo 于 2009-6-23 10:41 编辑
很正常,s=1时应该是条件收敛,所以收敛速度很慢. mathe 发表于 2009-6-23 10:13
s=1 是绝对收敛,s=0都是绝对收敛到1/2。 粗略估计在第k项截断产生的误差大致在$\frac{1}{(2k\pi)^s$。可以用各种办法提高收敛性 http://mathworld.wolfram.com/ConvergenceImprovement.html 这个公式对所有的正实数s都适用。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-6-23 10:57:55 | 显示全部楼层
我只是试验一下. 你用的是哪方面的只是推导的?我感觉应该是我不了解的知识,比如统计方面的 mathe 发表于 2009-6-23 10:15
如果你放弃n是整数的要求,再放弃步长在[0,1]内均匀分布的要求,从细节中解脱出来,去进行计算,立刻就该想到用Laplace变换做。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2009-6-23 11:28:19 | 显示全部楼层
Laplace变换我的确不熟悉.看了下wolframe网站, 是不是使用 $L_t[f^{(n)}(t)](s)=s^n L_t[f(t)] - s^{n-1}f(0)-s^(n-2)f'(0)-...-f^{(n-1)}(0)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-23 17:48 , Processed in 0.028581 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表