- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
楼主 |
发表于 2016-1-12 18:40:57
|
显示全部楼层
受楼上Buffalo 网友给出的精彩小结启发,终于得到如下结论:
对于\(k=4\),我们可以得到:
对于\(a_{n+1}=a_n+\frac{1}{a_n^3}\)
1.令\(a_n^4=b_n\),得到
\(b_{n+1}=b_n+4+\frac{6}{b_n}+\frac{4}{b_n^2}+\frac{1}{b_n^3}\)
2.由\(m'-\frac{3\ln(m')}{8}=m+1-\frac{3\ln(m)}{8}\)渐近展开:
\(m'=J(m)=m+1+\frac{3}{8m}-\frac{3}{64m^2}-\frac{17}{512m^3}+\frac{105}{4096m^4}-\frac{297}{163840m^5}-\frac{11111}{1310720m^6}+\frac{76737}{14680064m^7}+\)
\(\frac{492243}{587202560m^8}-\frac{40474549}{14092861440m^9}+\frac{9274267}{7516192768m^{10}}+\ldots\)
3.由\(m(x+4+\frac{6}{x}+\frac{4}{x^2}+\frac{1}{x^3})=J(m(x))\),设\(m(x)=\frac{x}{4}+\sum_{k=1}^\infty \frac{u_k}{x^k}\),渐近展开:
\(m(x)=\frac{x}{4}+\frac{7}{16x}+\frac{75}{64x^2}+\frac{1001}{384x^3}+\frac{11637}{2560x^4}+\frac{292843}{76800x^5}-\frac{8813443}{716800x^6}-\frac{1962519689}{30105600x^7}+\frac{709670963}{342921600x^8}+\)
\(\frac{28761656717}{1028764800x^9}-\frac{6137702104697}{226328256000x^{10}}+\ldots\)
4.极限值\(a_0\)由下式求出:
\(m(a_n)-\frac{3\ln(a_n)}{8}=n+\frac{a_0}{4}\)
5.关于\(b_n\)渐近展开式计算:\(y=\frac{1}{n},X=\frac{3\ln(n)}{2}+a_0\)
\(F_1=f(y,X)=\frac{4}{y}+X+(b_{00}+b_{01}X)y+(b_{10}+b_{11}X+b_{12}X^2)y^2+(b_{20}+b_{21}X+b_{22}X^2+b_{23}X^3)y^3+(b_{30}+b_{31}X+b_{32}X^2+b_{33}X^3+b_{34}X^4)y^4+(b_{40}+b_{41}X+b_{42}X^2+b_{43}X^3+b_{44}X^4+b_{45}X^5)y^5+\)
\((b_{50}+b_{51}X+b_{52}X^2+b_{53}X^3+b_{54}X^4+b_{55}X^5+b_{56}X^6)y^6+(b_{60}+b_{61}X+b_{62}X^2+b_{63}X^3+b_{64}X^4+b_{65}X^5+b_{66}X^6+b_{67}X^7)y^7+(b_{70}+b_{71}X+b_{72}X^2+b_{73}X^3+b_{74}X^4+b_{75}X^5+b_{76}X^6+b_{77}X^7+b_{78}X^8)y^8\)
\(F_2=f(\frac{y}{1+y},X+\frac{3\ln(1+y)}{2})\)
由\(F_2=F_1+4+\frac{6}{F_1}+\frac{4}{F_1^2}+\frac{1}{F_1^3}\)求解得到:
\(b_{00}=\frac{-7}{16}, b_{01} =\frac{3}{8}, b_{10} =\frac{-75}{256}, b_{11} =\frac{1}{4}, b_{12}=\frac{-3}{64}, b_{20}=\frac{-1295}{6144}, b_{21}=\frac{123}{512}, b_{22}=\frac{-41}{512}, b_{23}=\frac{1}{128}, b_{30}=\frac{-27387}{163840}, b_{31}=\frac{2033}{8192}, b_{32}=\frac{-123}{1024},b_{33}=\frac{47}{2048}, b_{34}=\frac{-3}{2048}, b_{40}=\frac{-2743793}{1960800}, b_{41}=\frac{85369}{327680}\)
\(b_{42}=\frac{-2771}{16384}, b_{43}=\frac{797}{16384}, b_{44}=\frac{-103}{16384}, b_{45}=\frac{3}{10240},b_{50}=\frac{-89215957}{734003200}, b_{51}=\frac{855727}{3145728}, b_{52}=\frac{-118521}{524288}, b_{53}=\frac{34883}{393216}, b_{54}=\frac{-4603}{262144}, b_{55}=\frac{551}{327680}, b_{56}=\frac{-1}{16384}, b_{60}=\frac{-4615268183}{41104179200}, b_{61}=\frac{13043753}{45875200}\)
\(b_{62}=\frac{-605645}{2097152}, b_{63}=\frac{38351}{262144}, b_{64}=\frac{-83575}{2097152}, b_{65}=\frac{7731}{1310720}, b_{66}=\frac{-581}{1310720}, b_{67}=\frac{3}{229376}\)
类似于mathe提供的求解思路,我们来讨论稍一般的情形
对于\(a_{n+1}=a_n+\frac{1}{a_n^{k-1}}\)
1.令\(a_n^k=b_n\),得到
\(b_{n+1}=b_n+k+\frac{k(k-1)}{2b_n}+\frac{k(k-1)(k-2)}{6b_n^2}+\frac{k(k-1)(k-2)(k-3)}{24b_n^3}+\frac{k(k-1)(k-2)(k-3)(k-4)}{120b_n^4}+\frac{k(k-1)(k-2)(k-3)(k-4)(k-5)}{720b_n^5}+\ldots\)
2.由\(m'-\frac{(k-1)\ln(m')}{2k}=m+1-\frac{(k-1)\ln(m)}{2k}\)渐近展开:
\(m'=J(m)=m+1+\frac{k-1}{2km}-\frac{k-1}{4k^2m^2}-\frac{-5k^2+2k^3+3}{24k^3m^3}+\frac{6k+k^4+4k^3-14k^2+3}{48k^4m^4}+\frac{-73k^4+50k^3+13k^5+100k^2-75k-15}{480k^5m^5}-\frac{325k^3+50k^2-248k^4+17k^6+6k^5-135k-15}{960k^6m^6}+\)
\(\frac{1225k^2-6125k^3+2744k^5-1441k^6+1911k^4+1470k+105+111k^7}{13440k^7m^7}+\frac{-32340k^3-17052k^4-13584k^6-2652k^7+43316k^5+14700k^2+6300k+997k^8+315}{80640k^8m^8}+\frac{102312k^4-112896k^5+42108k^7-10721k^8-12092k^6+35280k^3-35280k^2+109k^9-8505k-315}{161280k^9m^9}+\ldots\)
3.由\(m(x+k+\frac{k(k-1)}{2x}+\frac{k(k-1)(k-2)}{6x^2}+\frac{k(k-1)(k-2)(k-3)}{24x^3}+\frac{k(k-1)(k-2)(k-3)(k-4)}{120x^4}+\frac{k(k-1)(k-2)(k-3)(k-4)(k-5)}{720x^5}+\ldots)=J(m(x))\),设\(m(x)=\frac{x}{k}+\sum_{k=1}^\infty \frac{u_k}{x^k}\),渐近展开:
\(m(x)=\frac{x}{k}+\frac{1+2k^2-3k}{12kx}+\frac{7k^3+13k-17k^2-3}{48kx^2}+\frac{-442k-1420k^3+437k^4+1490k^2-67+2k^5}{4320kx^3}+\frac{-6573k+42315k^3-17661k^2+7014k^5-30072k^4+4901+76k^6}{12096kx^4}+\frac{-117880k^2+301049k^4-151018k^3+25666k^6-160888k^5+119816k+738k^7-17483}{1209600kx^5}-\)
\(\frac{3163257k^2+411621k^4-2145479k^3-35273k^6+207669k^5-2315013k-27849k^7+738931+2136k^8}{4838400kx^6}-\frac{-357561276k^3-98841666k^5+225077818k^4-20753016k^7+46893306k^6+320183186k^2+4159831k^8-134911902k-37644k^9+15791307+56k^{10}}{203212800kx^7}+\cdot\)
4.极限值\(a_0\)由下式求出:
\(m(a_n)-\frac{(k-1)\ln(a_n)}{2k}=n+\frac{a_0}{k}\)
5.关于\(b_n\)渐近展开式计算:\(y=\frac{1}{n},X=\frac{(k-1)\ln(n)}{2}+a_0\)
\(F_1=f(y,X)=\frac{k}{y}+X+(b_{00}+b_{01}X)y+(b_{10}+b_{11}X+b_{12}X^2)y^2+(b_{20}+b_{21}X+b_{22}X^2+b_{23}X^3)y^3+(b_{30}+b_{31}X+b_{32}X^2+b_{33}X^3+b_{34}X^4)y^4+(b_{40}+b_{41}X+b_{42}X^2+b_{43}X^3+b_{44}X^4+b_{45}X^5)y^5+\)
\((b_{50}+b_{51}X+b_{52}X^2+b_{53}X^3+b_{54}X^4+b_{55}X^5+b_{56}X^6)y^6+(b_{60}+b_{61}X+b_{62}X^2+b_{63}X^3+b_{64}X^4+b_{65}X^5+b_{66}X^6+b_{67}X^7)y^7+(b_{70}+b_{71}X+b_{72}X^2+b_{73}X^3+b_{74}X^4+b_{75}X^5+b_{76}X^6+b_{77}X^7+b_{78}X^8)y^8\)
\(F_2=f(\frac{y}{1+y},X+\frac{(k-1)\ln(1+y)}{2})\)
由\(F_2=F_1+k+\frac{k(k-1)}{2F_1}+\frac{k(k-1)(k-2)}{6F_1^2}+\frac{k(k-1)(k-2)(k-3)}{24F_1^3}+\frac{k(k-1)(k-2)(k-3)(k-4)}{120F_1^4}+\frac{k(k-1)(k-2)(k-3)(k-4)(k-5)}{720F_1^5}+\ldots\)求解得到:
\(b_{00}=\frac{-(2k-1)(k-1)}{12k}, b_{01} =\frac{k-1}{2k}, b_{10} =\frac{-(7k-3)(k-1)^2}{48k^2}, b_{11} =\frac{(5k-4)(k-1)}{12k^2}, b_{12}=\frac{-(k-1)}{4k^2}, b_{20}=\frac{-(k-1)(2k^4+559k^3-1221k^2+659k+37)}{4320k^3}, b_{21}=\frac{(12k-7)(k-1)^2}{24k^3}, b_{22}=\frac{-(13k-11)(k-1)}{24k^3}, b_{23}=\frac{k-1}{6k^3}, b_{30}=\frac{-(k-1)(76k^5+15910k^4-48812k^3+46423k^2-10298k-3011)}{120960k^4}, b_{31}=\frac{(k-1)(2k^4+919k^3-2151k^2+1439k-173)}{1440k^4}, b_{32}=\frac{-(49k-32)(k-1)^2}{48k^4},b_{33}=\frac{(15k-13)(k-1)}{24k^4}, b_{34}=\frac{-(k-1)}{8k^4}\)
\(b_{40}=\frac{-(k-1)(3334k^6+511322k^5-2033962k^4+2779595k^3-1359379k^2+30191k+38659)}{3628800k^5}, b_{41}=\frac{(k-1)(194k^5+51077k^4-162094k^3+168236k^2-54448k-2389)}{60480k^5} ,b_{42}=\frac{-(k-1)(4k^4+2573k^3-6252k^2+4573k-826)}{1440k^5}, b_{43}=\frac{(241k-167)(k-1)^2}{144k^5}, b_{44}=\frac{-(33k-29)(k-1)}{48k^5}, b_{45}=\frac{k-1}{10k^5}, b_{50}=\frac{-(k-1)(18908k^7+2272111k^6-11151258k^5+19937499k^4-14363838k^3+637575k^2+4729396k-2469193)}{14515200k^6}, b_{51}=\frac{(k-1)(4498k^6+816620k^5-3312988k^4+4761575k^3-2695483k^2+342545k+52993)}{725760k^6}\)
\(b_{52}=\frac{-(k-1)(1138k^5+363283k^4-1181120k^3+1295830k^2-498998k+22747)}{120960k^6} , b_{53}=\frac{(k-1)(4k^4+3296k^3-8199k^2+6298k-1327)}{864k^6}, b_{54}=\frac{-(1403k-1009)(k-1)^2}{576k^6}, b_{55}=\frac{(177k-157)(k-1)}{240k^6}, b_{56}=\frac{-(k-1)}{12k^6}\)
|
|