- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2024-5-5 16:54:45
|
显示全部楼层
根据楼上46#mathe的分析结果我们试着推算出:
\(a_{n+1}=a_n+b_0+\frac{b_1}{a_n}+\frac{b_2}{a_n^2}+\frac{b_3}{a_n^3}+\frac{b_4}{a_n^4}+\frac{b_5}{a_n^5}+\frac{b_6}{a_n^6}+\frac{b_7}{a_n^7}+\frac{b_8}{a_n^8}\)
的渐近表达式
我们设\(X=\frac{b_1\ln(n)}{b_0}+c_0,y=\frac{1}{n}\)
显然有\(\frac{1}{n+1}=\frac{y}{1+y},X_{n+1}=\frac{b_1\ln(\frac{1+y}{y})}{b_0}+c_0=X_n+\frac{b_1\ln(1+y)}{b_0}+c_0\)
\(a_n=nb_0+X+\sum_{h=0}^{\infty} P_h(X) \frac{1}{n^h}=\frac{b_0}{y}+X+\sum_{h=0}^{\infty} P_h(X) y^h\)
\(\sum_{h=0}^{\infty} P_h(X) y^h=(b_{00}+b_{01}X)y+(b_{10}+b_{11}X+b_{12}X^2)y^2+(b_{20}+b_{21}X+b_{22}X^2+b_{23}X^3)y^3+(b_{30}+b_{31}X+b_{32}X^2+b_{33}X^3+b_{34}X^4)y^4+(b_{40}+b_{41}X+b_{42}X^2+b_{43}X^3+b_{44}X^4+b_{45}X^5)y^5+(b_{50}+b_{51}X+b_{52}X^2+b_{53}X^3+b_{54}X^4+b_{55}X^5+b_{56}X^6)y^6+(b_{60}+b_{61}X+b_{62}X^2+b_{63}X^3+b_{64}X^4+b_{65}X^5+b_{66}X^6+b_{67}X^7)y^7\)
由下面递推式关系
\(a_{n}=F(X,y)=\frac{b_0}{y}+X+\sum_{h=0}^{\infty} P_h(X) y^h\)
\(a_{n+1}=F(X+\frac{b_1\ln(1+y)}{b_0}+c_0,\frac{y}{1+y})\)
\(a_{n+1}=a_n+b_0+\frac{b_1}{a_n}+\frac{b_2}{a_n^2}+\frac{b_3}{a_n^3}+\frac{b_4}{a_n^4}+\frac{b_5}{a_n^5}+\frac{b_6}{a_n^6}+\frac{b_7}{a_n^7}+\frac{b_8}{a_n^8}\)
渐近展开关于y,X的系数对应相等可以得到
b00 = -(b0^2*b1 + 2*b0*b2 - 2*b1^2)/(2*b0^3),
b01 = b1/b0^2,
b10 = -(b0^4*b1 + 6*b0^3*b2 + 3*b0^2*b1^2 + 6*b0^2*b3 - 6*b1^3)/(12*b0^5),
b11 = (b0*b1 + 2*b2)/(2*b0^3),
b12 = -b1/(2*b0^3),
b20 = -(6*b0^5*b2 + 13*b0^4*b1^2 + 18*b0^4*b3 + 36*b0^3*b1*b2 - 21*b0^2*b1^3 + 12*b0^3*b4 - 6*b0^2*b1*b3 + 24*b0^2*b2^2 - 36*b0*b1^2*b2 + 6*b1^4)/(36*b0^7),
b21 = (b0^4*b1 + 6*b0^3*b2 + 6*b0^2*b1^2 + 6*b0^2*b3 + 6*b0*b1*b2 - 6*b1^3)/(6*b0^6),
b22 = -(b0^2*b1 + 2*b0*b2 + b1^2)/(2*b0^5),
b23 = b1/(3*b0^4),
b30 = (6*b0^8*b1 - 120*b0^6*b1^2 - 180*b0^6*b3 - 900*b0^5*b1*b2 - 65*b0^4*b1^3 - 360*b0^5*b4 - 540*b0^4*b1*b3 - 900*b0^4*b2^2 + 540*b0^3*b1^2*b2 + 510*b0^2*b1^4 - 180*b0^4*b5 + 120*b0^3*b1*b4 - 720*b0^3*b2*b3 + 660*b0^2*b1^2*b3 + 60*b0^2*b1*b2^2 + 360*b0*b1^3*b2 - 300*b1^5)/(720*b0^9),
b31 = (2*b0^5*b2 + 5*b0^4*b1^2 + 6*b0^4*b3 + 16*b0^3*b1*b2 - 3*b0^2*b1^3 + 4*b0^3*b4 + 2*b0^2*b1*b3 + 8*b0^2*b2^2 - 8*b0*b1^2*b2 - 2*b1^4)/(4*b0^8),
b32 = -(b0^4*b1 + 6*b0^3*b2 + 8*b0^2*b1^2 + 6*b0^2*b3 + 10*b0*b1*b2 - 4*b1^3)/(4*b0^7),
b33 = (3*b0^2*b1 + 6*b0*b2 + 5*b1^2)/(6*b0^6),
b34 = -b1/(4*b0^5),
b40 = (120*b0^9*b2 + 36*b1^2*b0^8 + (-2400*b1*b2 - 1200*b4)*b0^7 + (-2030*b1^3 - 5460*b1*b3 - 4440*b2^2 - 1800*b5)*b0^6 + (-5800*b1^2*b2 - 2400*b1*b4 - 9000*b2*b3 - 720*b6)*b0^5 + (4365*b1^4 + 5700*b3*b1^2 + (-7500*b2^2 + 540*b5)*b1 - 3360*b4*b2 - 1080*b3^2)*b0^4 + (12900*b1^3*b2 + 3240*b1^2*b4 + 1680*b1*b2*b3 - 3120*b2^3)*b0^3 + (-2010*b1^5 + 180*b1^3*b3 + 7020*b1^2*b2^2)*b0^2 - 4200*b0*b1^4*b2 - 180*b1^6)/(3600*b0^11),
b41 = (-6*b1*b0^8 + (120*b1^2 + 180*b3)*b0^6 + (990*b1*b2 + 360*b4)*b0^5 + (290*b1^3 + 810*b1*b3 + 900*b2^2 + 180*b5)*b0^4 + (180*b1^2*b2 + 60*b1*b4 + 720*b2*b3)*b0^3 + (-645*b1^4 - 570*b1^2*b3 + 300*b1*b2^2)*b0^2 - 720*b0*b1^3*b2 + 210*b1^5)/(180*b0^10),
b42 = (-4*b0^5*b2 + (-11*b1^2 - 12*b3)*b0^4 + (-38*b1*b2 - 8*b4)*b0^3 + (-2*b1^3 - 10*b1*b3 - 16*b2^2)*b0^2 + 6*b0*b1^2*b2 + 8*b1^4)/(4*b0^9),
b43 = (2*b0^4*b1 + 12*b0^3*b2 + (19*b1^2 + 12*b3)*b0^2 + 26*b1*b2*b0 - 3*b1^3)/(6*b0^8),
b44 = (-6*b0^2*b1 - 12*b0*b2 - 13*b1^2)/(12*b0^7),
b45 = b1/(5*b0^6),
b50 = (-600*b1*b0^12 + (6930*b1^2 + 12600*b3)*b0^10 + 12600*b0^9*b1*b2 + (-59423*b1^3 - 163800*b1*b3 - 88200*b2^2 - 63000*b5)*b0^8 + (-527100*b1^2*b2 - 277200*b1*b4 - 466200*b2*b3 - 75600*b6)*b0^7 + (33915*b1^4 - 120120*b3*b1^2 + (-904680*b2^2 - 94500*b5)*b1 - 428400*b4*b2 - 151200*b3^2 - 25200*b7)*b0^6 + (673050*b1^3*b2 + 327600*b4*b1^2 + (-466200*b2*b3 + 20160*b6)*b1 - 466200*b2^3 - 138600*b5*b2 - 75600*b3*b4)*b0^5 + (193305*b1^5 + 567000*b1^3*b3 + (711900*b2^2 + 136080*b5)*b1^2 + (85680*b2*b4 + 36540*b3^2)*b1 - 327600*b2^2*b3)*b0^4 + (119700*b1^4*b2 - 15120*b1^3*b4 + 561960*b1^2*b2*b3 + 32760*b1*b2^3)*b0^3 + (-229320*b1^6 - 244440*b1^4*b3 + 105840*b1^3*b2^2)*b0^2 - 214200*b0*b1^5*b2 + 61740*b1^7)/(151200*b0^13),
b51 = (-24*b0^9*b2 - 12*b1^2*b0^8 + (480*b1*b2 + 240*b4)*b0^7 + (502*b1^3 + 1236*b1*b3 + 888*b2^2 + 360*b5)*b0^6 + (1952*b1^2*b2 + 768*b1*b4 + 1800*b2*b3 + 144*b6)*b0^5 + (-641*b1^4 - 492*b3*b1^2 + (2220*b2^2 + 36*b5)*b1 + 672*b4*b2 + 216*b3^2)*b0^4 + (-2436*b1^3*b2 - 600*b1^2*b4 + 240*b1*b2*b3 + 624*b2^3)*b0^3 + (-114*b1^5 - 492*b1^3*b3 - 1164*b1^2*b2^2)*b0^2 + 264*b0*b1^4*b2 + 204*b1^6)/(144*b0^12),
b52 = (6*b1*b0^8 + (-120*b1^2 - 180*b3)*b0^6 + (-1062*b1*b2 - 360*b4)*b0^5 + (-488*b1^3 - 1026*b1*b3 - 900*b2^2 - 180*b5)*b0^4 + (-864*b1^2*b2 - 204*b1*b4 - 720*b2*b3)*b0^3 + (609*b1^4 + 390*b1^2*b3 - 588*b1*b2^2)*b0^2 + 828*b0*b1^3*b2 - 66*b1^5)/(72*b0^11),
b53 = (20*b0^5*b2 + (59*b1^2 + 60*b3)*b0^4 + (214*b1*b2 + 40*b4)*b0^3 + (48*b1^3 + 74*b1*b3 + 80*b2^2)*b0^2 + 22*b0*b1^2*b2 - 46*b1^4)/(12*b0^10),
b54 = (-10*b0^4*b1 - 60*b0^3*b2 + (-107*b1^2 - 60*b3)*b0^2 - 154*b1*b2*b0 - 11*b1^3)/(24*b0^9),
b55 = (30*b0^2*b1 + 60*b0*b2 + 77*b1^2)/(60*b0^8),
b56 = -b1/(6*b0^7),
b60 = (-25200*b0^13*b2 - 18030*b1^2*b0^12 + (291060*b1*b2 + 176400*b4)*b0^11 + (84777*b1^3 + 166320*b1*b3 + 186480*b2^2)*b0^10 + (-2407566*b1^2*b2 - 1675800*b1*b4 - 1852200*b2*b3 - 529200*b6)*b0^9 + (-1261330*b1^4 - 4784220*b3*b1^2 + (-8048880*b2^2 - 2286900*b5)*b1 - 4258800*b4*b2 - 1701000*b3^2 - 529200*b7)*b0^8 + (-2265270*b1^3*b2 - 210000*b4*b1^2 + (-13499640*b2*b3 - 635040*b6)*b1 - 5841360*b2^3 - 3439800*b5*b2 - 2116800*b3*b4 - 151200*b8)*b0^7 + (3354855*b1^5 + 8476650*b1^3*b3 + (-1516200*b2^2 + 2857680*b5)*b1^2 + (-3316320*b2*b4 - 820260*b3^2 + 126000*b7)*b1 - 9790200*b2^2*b3 - 967680*b2*b6 - 491400*b3*b5 - 201600*b4^2)*b0^6 + (12830160*b1^4*b2 + 4533480*b1^3*b4 + (13829760*b2*b3 + 957600*b6)*b1^2 + (-4692240*b2^3 + 662760*b2*b5 + 504000*b3*b4)*b1 - 2499840*b2^2*b4 - 1564920*b2*b3^2)*b0^5 + (-2516745*b1^6 - 2310840*b1^4*b3 + (13776840*b2^2 - 189000*b5)*b1^3 + (4530960*b2*b4 + 1392300*b3^2)*b1^2 + 1338120*b1*b2^2*b3 - 1471680*b2^4)*b0^4 + (-8793540*b1^5*b2 - 2167200*b1^4*b4 - 148680*b1^3*b2*b3 + 4432680*b1^2*b2^3)*b0^3 + (74340*b1^7 - 945000*b1^5*b3 - 4523400*b1^4*b2^2)*b0^2 + 1093680*b0*b1^6*b2 + 283500*b1^8)/(1058400*b0^15),
b61 = (600*b1*b0^12 + (-6930*b1^2 - 12600*b3)*b0^10 - 16800*b0^9*b1*b2 + (57323*b1^3 + 163800*b1*b3 + 88200*b2^2 + 63000*b5)*b0^8 + (611100*b1^2*b2 + 319200*b1*b4 + 466200*b2*b3 + 75600*b6)*b0^7 + (53935*b1^4 + 336420*b3*b1^2 + (1060080*b2^2 + 157500*b5)*b1 + 428400*b4*b2 + 151200*b3^2 + 25200*b7)*b0^6 + (-331450*b1^3*b2 - 193200*b4*b1^2 + (781200*b2*b3 + 5040*b6)*b1 + 466200*b2^3 + 138600*b5*b2 + 75600*b3*b4)*b0^5 + (-305480*b1^5 - 653100*b1^3*b3 + (-323400*b2^2 - 129780*b5)*b1^2 + (31920*b2*b4 + 1260*b3^2)*b1 + 327600*b2^2*b3)*b0^4 + (-546000*b1^4*b2 - 89880*b1^3*b4 - 519960*b1^2*b2*b3 + 76440*b1*b2^3)*b0^3 + (209370*b1^6 + 158340*b1^4*b3 - 309540*b1^3*b2^2)*b0^2 + 260400*b0*b1^5*b2 - 26040*b1^7)/(25200*b0^14),
b62 = (72*b0^9*b2 + 48*b1^2*b0^8 + (-1440*b1*b2 - 720*b4)*b0^7 + (-1746*b1^3 - 4068*b1*b3 - 2664*b2^2 - 1080*b5)*b0^6 + (-7980*b1^2*b2 - 3024*b1*b4 - 5400*b2*b3 - 432*b6)*b0^5 + (947*b1^4 - 576*b3*b1^2 + (-8460*b2^2 - 468*b5)*b1 - 2016*b4*b2 - 648*b3^2)*b0^4 + (5580*b1^3*b2 + 1392*b1^2*b4 - 2160*b1*b2*b3 - 1872*b2^3)*b0^3 + (1560*b1^5 + 2256*b1^3*b3 + 2316*b1^2*b2^2)*b0^2 + 864*b0*b1^4*b2 - 744*b1^6)/(144*b0^13),
b63 = (-6*b1*b0^8 + (120*b1^2 + 180*b3)*b0^6 + (1122*b1*b2 + 360*b4)*b0^5 + (665*b1^3 + 1206*b1*b3 + 900*b2^2 + 180*b5)*b0^4 + (1506*b1^2*b2 + 324*b1*b4 + 720*b2*b3)*b0^3 + (-465*b1^4 - 168*b1^2*b3 + 828*b1*b2^2)*b0^2 - 762*b0*b1^3*b2 - 72*b1^5)/(36*b0^12),
b64 = (-60*b0^5*b2 + (-187*b1^2 - 180*b3)*b0^4 + (-702*b1*b2 - 120*b4)*b0^3 + (-251*b1^3 - 282*b1*b3 - 240*b2^2)*b0^2 - 220*b0*b1^2*b2 + 127*b1^4)/(24*b0^11),
b65 = (30*b0^4*b1 + 180*b0^3*b2 + (351*b1^2 + 180*b3)*b0^2 + 522*b1*b2*b0 + 110*b1^3)/(60*b0^10),
b66 = (-10*b0^2*b1 - 20*b0*b2 - 29*b1^2)/(20*b0^9),
b67 = b1/(7*b0^8)}
例1:对于\(a_{n+1}=a_n+2+\frac{1}{a_n}\)
\( b_0=2,b_1=1,b_2=0,b_3=0,b_4=0,b_5=0,b_6=0,b_7=0,b_8=0\) 代入上面计算结果得到
{b00 = -1/8, b01 = 1/4, b10 = -11/192, b11 = 1/8, b12 = -1/16, b20 = -65/2304, b21 = 17/192, b22 = -5/64, b23 = 1/48, b30 = -1361/92160, b31 = 33/512, b32 = -11/128, b33 = 17/384, b34 = -1/128, b40 = -14771/1843200, b41 = 4207/92160, b42 = -11/128, b43 = 35/512, b44 = -37/1536, b45 = 1/320, b50 = -1541417/309657600, b51 = 4637/147456, b52 = -5791/73728, b53 = 545/6144, b54 = -599/12288, b55 = 197/15360, b56 = -1/768, b60 = -33729013/8670412800, b61 = 588223/25804800, b62 = -9851/147456, b63 = 3713/36864, b64 = -3869/49152, b65 = 997/30720, b66 = -69/10240, b67 = 1/1792}
进一步代入\(a_n\)渐近表达式得到
a_n=2*n + ln(n)/2 + c0 + (ln(n)/8 + c0/4 - 1/8)/n + (-(ln(n)/2 + c0)^2/16 + ln(n)/16 + c0/8 - 11/192)/n^2 + ((ln(n)/2 + c0)^3/48 - (5*(ln(n)/2 + c0)^2)/64 + (17*ln(n))/384 + (17*c0)/192 - 65/2304)/n^3 + (-(ln(n)/2 + c0)^4/128 + (17*(ln(n)/2 + c0)^3)/384 - (11*(ln(n)/2 + c0)^2)/128 + (33*ln(n))/1024 + (33*c0)/512 - 1361/92160)/n^4 + ((ln(n)/2 + c0)^5/320 - (37*(ln(n)/2 + c0)^4)/1536 + (35*(ln(n)/2 + c0)^3)/512 - (11*(ln(n)/2 + c0)^2)/128 + (4207*ln(n))/184320 + (4207*c0)/92160 - 14771/1843200)/n^5 + (-(ln(n)/2 + c0)^6/768 + (197*(ln(n)/2 + c0)^5)/15360 - (599*(ln(n)/2 + c0)^4)/12288 + (545*(ln(n)/2 + c0)^3)/6144 - (5791*(ln(n)/2 + c0)^2)/73728 + (4637*ln(n))/294912 + (4637*c0)/147456 - 1541417/309657600)/n^6 + ((ln(n)/2 + c0)^7/1792 - (69*(ln(n)/2 + c0)^6)/10240 + (997*(ln(n)/2 + c0)^5)/30720 - (3869*(ln(n)/2 + c0)^4)/49152 + (3713*(ln(n)/2 + c0)^3)/36864 - (9851*(ln(n)/2 + c0)^2)/147456 + (588223*ln(n))/51609600 + (588223*c0)/25804800 - 33729013/8670412800)/n^7
将其结果表达为:
\(t=4n,u=\frac{\ln(n)}{2}+c_0\)得到
a_n=t/2 + u + (u - 1/2)/t + (-u^2 + 2*u - 11/12)/t^2 + (4/3*u^3 - 5*u^2 + 17/3*u - 65/36)/t^3 + (-1361/360 - 2*u^4 + 34/3*u^3 - 22*u^2 + 33/2*u)/t^4 + (-14771/1800 + 16/5*u^5 - 74/3*u^4 + 70*u^3 - 88*u^2 + 4207/90*u)/t^5 + (-1541417/75600 - 16/3*u^6 + 788/15*u^5 - 599/3*u^4 + 1090/3*u^3 - 5791/18*u^2 + 4637/36*u)/t^6 + (-33729013/529200 + 64/7*u^7 - 552/5*u^6 + 7976/15*u^5 - 3869/3*u^4 + 14852/9*u^3 - 9851/9*u^2 + 588223/1575*u)/t^7
与下面链接中的结果一致
A233770 Decimal expansion of lim_{n -> infinity} b(n)^2 - 2n - (log n)/2 where b(i) = b(i-1) + 1/b(i-1) for i >= 2, b(1) = 1 (see A073833).
t/2 + u + (u - 1/2)/t + (-u^2 + 2*u - 11/12)/t^2 + ((4*u^3)/3 - 5*u^2 + 17/3*u - 65/36)/t^3,
[t = 4*n, u = ln(n)/2 + c, c = -0.27685762486257653893643725082357339631797973752751373915977316435485014180]
例2:对于\(a_{n+1}=a_n+\frac{1}{a_n^2}\)
两边3次方后再展开令\(b_n=a_n^3\)得到 \(b_{n+1}=b_n+3+\frac{3}{b_n}+\frac{1}{b_n^2}\)
即有\(b_0=3,b_1=3,b_2=1,b_3=0,b_4=0,b_5=0,b_6=0,b_7=0,b_8=0\)代入上面结果有:
b00 = -5/18, b01 = 1/3, b10 = -1/6, b11 = 11/54, b12 = -1/18, b20 = -157/1458, b21 = 29/162, b22 = -7/81, b23 = 1/81, b30 = -13327/174960, b31 = 122/729, b32 = -115/972, b33 = 8/243, b34 = -1/324, b40 = -444191/7873200, b41 = 20647/131220, b42 = -1321/8748, b43 = 139/2187, b44 = -35/2916, b45 = 1/1215, b50 = -14533499/330674400, b51 = 138391/944784, b52 = -28573/157464, b53 = 8273/78732, b54 = -200/6561, b55 = 187/43740, b56 = -1/4374, b60 = -777322409/20832487200, b61 = 33909461/248005800, b62 = -65179/314928, b63 = 2047/13122, b64 = -1097/17496, b65 = 1787/131220, b66 = -197/131220, b67 = 1/15309
即有
b_n=3*n + ln(n)/2 + c0 + (ln(n)/6 + c0/3 - 5/18)/n + (-(ln(n)/2 + c0)^2/18 + (11*ln(n))/108 + (11*c0)/54 - 1/6)/n^2 + ((ln(n)/2 + c0)^3/81 - (7*(ln(n)/2 + c0)^2)/81 + (29*ln(n))/324 + (29*c0)/162 - 157/1458)/n^3 + (-(ln(n)/2 + c0)^4/324 + (8*(ln(n)/2 + c0)^3)/243 - (115*(ln(n)/2 + c0)^2)/972 + (61*ln(n))/729 + (122*c0)/729 - 13327/174960)/n^4 + ((ln(n)/2 + c0)^5/1215 - (35*(ln(n)/2 + c0)^4)/2916 + (139*(ln(n)/2 + c0)^3)/2187 - (1321*(ln(n)/2 + c0)^2)/8748 + (20647*ln(n))/262440 + (20647*c0)/131220 - 444191/7873200)/n^5 + (-(ln(n)/2 + c0)^6/4374 + (187*(ln(n)/2 + c0)^5)/43740 - (200*(ln(n)/2 + c0)^4)/6561 + (8273*(ln(n)/2 + c0)^3)/78732 - (28573*(ln(n)/2 + c0)^2)/157464 + (138391*ln(n))/1889568 + (138391*c0)/944784 - 14533499/330674400)/n^6 + ((ln(n)/2 + c0)^7/15309 - (197*(ln(n)/2 + c0)^6)/131220 + (1787*(ln(n)/2 + c0)^5)/131220 - (1097*(ln(n)/2 + c0)^4)/17496 + (2047*(ln(n)/2 + c0)^3)/13122 - (65179*(ln(n)/2 + c0)^2)/314928 + (33909461*ln(n))/496011600 + (33909461*c0)/248005800 - 777322409/20832487200)/n^7
若记x=ln(n)+c0
b_n=3*n + x + (x/3 - 5/18)/n + (-1/18*x^2 + 11/54*x - 1/6)/n^2 + (1/81*x^3 - 7/81*x^2 + 29/162*x - 157/1458)/n^3 + (-1/324*x^4 + 8/243*x^3 - 115/972*x^2 + 122/729*x - 13327/174960)/n^4 + (1/1215*x^5 - 35/2916*x^4 + 139/2187*x^3 - 1321/8748*x^2 + 20647/131220*x - 444191/7873200)/n^5 + (-1/4374*x^6 + 187/43740*x^5 - 200/6561*x^4 + 8273/78732*x^3 - 28573/157464*x^2 + 138391/944784*x - 14533499/330674400)/n^6 + (1/15309*x^7 - 197/131220*x^6 + 1787/131220*x^5 - 1097/17496*x^4 + 2047/13122*x^3 - 65179/314928*x^2 + 33909461/248005800*x - 777322409/20832487200)/n^7
|
|