找回密码
 欢迎注册
楼主: lsr314

[提问] 周长、面积相等的本原三角形

  [复制链接]
发表于 2025-7-28 08:08:14 | 显示全部楼层
第二组8个三角形的:
3255514 229793644080 :8 {92036 280896 1254825}{122265 203840 1301652}{73568 373464 1180725}{125685 197912 1304160}{117325 213136 1297296}{56628 575225 995904}{56784 571725 999248}{63360 466235 1098162}

点评

我顺序计算的好处是任何时候停下来,随时可以重新接下去继续计算  发表于 2025-7-28 14:42

评分

参与人数 2威望 +20 金币 +20 贡献 +20 经验 +20 鲜花 +20 收起 理由
northwolves + 8 + 8 + 8 + 8 + 8 很给力!
wayne + 12 + 12 + 12 + 12 + 12 竟然还在计算, 我那次楼道停电后就没继续了.

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-7-28 15:33:54 | 显示全部楼层
简单计算了一下, mathe的这个数据在我那里,需要搜索到$[u,v]=[55/388, 2660/1067]$, 这个已经超纲了. 500以内的我都没有搜索完.更别提1000以外的范围了.
看来有理参数解的方式搜索也有很大的局限性.

点评

是的.我这边也发现了素因子很大  发表于 2025-7-29 17:09
我发现前面很多数据内接圆半径是整数,而且它和半周长都是一些不超过100的素数乘积。 但是这个解内接圆半径分母23251是一个超大素数了。  发表于 2025-7-29 16:40
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 6 天前 | 显示全部楼层
northwolves 发表于 2025-7-11 23:00
周长p,面积s都是整数的n个解的最小组合:

n=1   12                6        {{3,4,5}}}

原则上,等腰三角形也是本原解,不能排除,所以,3组解最小的是98. 而不是[210, 840]  (35, 73, 102) (25, 84, 101) (21, 89, 100)
  1. 3: [98, 420]  (29, 29, 40) (25, 34, 39) (24, 37, 37)
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 5 天前 | 显示全部楼层
混杂有等腰三角形的本原解也挺多的. 我给出几组,4,5的.
周长和面积的关系是 $2 m^2 = p, m n (m^2 - n^2) = 2 S$,其中$gcd(m,n)=1$.
  1. {5,{935/2341,935/2341},{10960562,5040948292380},{{3177253,3177253,4606056},{2696344,3742237,4521981},{2619071,3863666,4477825},{2495761,4172590,4292211},{2490840,4234861,4234861}}}
  2. {4,{7/37,7/37},{2738,170940},{{709,709,1320},{445,984,1309},{319,1138,1281},{280,1229,1229}}}
  3. {4,{69/139,69/139},{38642,69822480},{{12041,12041,14560},{11677,12444,14521},{11271,13042,14329},{11040,13801,13801}}}
  4. {4,{91/139,91/139},{38642,69822480},{{12041,12041,14560},{11677,12444,14521},{11271,13042,14329},{11040,13801,13801}}}
  5. {4,{29/211,29/211},{89042,133638960},{{22681,22681,43680},{8996,37033,43013},{7575,38866,42601},{6496,41273,41273}}}
  6. {4,{203/643,203/643},{826898,24294057480},{{227329,227329,372240},{158249,308498,360151},{150249,323491,353158},{146160,340369,340369}}}
  7. {4,{133/677,133/677},{916658,19837833120},{{238009,238009,440640},{148504,331713,436441},{111325,377689,427644},{104304,389017,423337}}}
  8. {4,{177/877,177/877},{1538258,57263978100},{{400229,400229,737800},{190929,631954,715375},{177359,654770,706129},{168504,684877,684877}}}
  9. {4,{209/1049,209/1049},{2200802,115838174760},{{572041,572041,1056720},{333761,824236,1042805},{272156,902725,1025921},{249771,940006,1011025}}}
  10. {4,{495/1549,495/1549},{4798802,825939284940},{{1322213,1322213,2154376},{1019701,1657429,2121672},{929071,1785106,2084625},{859320,1969741,1969741}}}
  11. {4,{525/2189,525/2189},{9583442,2595005212800},{{2533673,2533673,4516096},{1951520,3139721,4492201},{1650089,3483596,4449757},{1617721,3522985,4442736}}}
  12. {4,{285/2263,285/2263},{10242338,1625268541260},{{2601197,2601197,5039944},{813775,4500249,4928314},{799239,4520674,4922425},{681720,4780309,4780309}}}
  13. {4,{3059/4819,3059/4819},{46445522,102196271617440},{{14299561,15225177,16920784},{14072464,15587497,16785561},{13888745,16073476,16483301},{13865280,16290121,16290121}}}
  14. {4,{2635/5659,2635/5659},{64048562,186997644353520},{{19483753,19483753,25081056},{18799641,20218396,25030525},{17630041,21850546,24567975},{17116960,23465801,23465801}}}
  15. {4,{4797/5875,4797/5875},{69031250,162110882934000},{{16470377,21218341,31342532},{16437257,21254216,31339777},{13326457,24942841,30761952},{11504416,28763417,28763417}}}
  16. {4,{15257/17143,15257/17143},{587764898,7991212405453200},{{132271109,172707340,282786449},{91516945,216185629,280062324},{70830657,241732417,275201824},{61106400,263329249,263329249}}}
  17. {4,{19809/21041,19809/21041},{885447362,10488217896248400},{{86587681,365127085,433732596},{82088056,370125897,433233409},{50459105,415730431,419257826},{50327200,417560081,417560081}}}

复制代码

点评

确实  发表于 4 天前
三组的不存在  发表于 4 天前
存在的,基本上都是兩組,有很多,一組的很少見,三組還沒出現  发表于 4 天前
是否存在两组或以上的本原等腰三角形面积和周长都相等你?  发表于 4 天前
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 4 天前 | 显示全部楼层
由于a+b-c,b+c-a,c+a-b同奇偶,如果它们都是奇数,那么\(x=\frac{b+c-a}2,y=\frac{c+a-b}2,z=\frac{a+b-c}2\)全部是半整数,得到面积平方\(S^2=xyz(x+y+z)\)必然不是整数,所以面积整数时x,y,z都是整数。
如果有x=z, 那么我们有\(2x+y=p, x^2y=\frac{S^2}{p}=H\),
消去y,我们得到x满足方程\(x^3-\frac{p}2x^2+\frac H2=0\)。
由此我们得到对于给定周长和面积,x最多有三个不同的解,而且它们乘积为\(-\frac H2 \lt 0\),所以其中至少一个负数,所以x最多两个正整数解。也就是最多两组等腰Heron三角形面接和周长都相同。
现在我们假设有两个等腰Heron三角形面积和周长都相同,它们对应的x为\(x_1,x_2\), 记上面方程第三个负根为\(-x_3=\frac{p}2 -x_1-x_2 \lt 0\)时整数或半整数。
根据韦达定理有\(x_1x_2-x_3(x_1+x_2)=0\), 也就是\(x_1+x_2|2x_1x_2\).
设\(g=gcd(x_1,x_2), x_1=g u, x_2=gv\), 于是\((u,v)=1\),而且\(u+v|2guv\),所以\(u+v|2g\), 所以我们设\(g=\frac{(u+v)d}2\),得到
\(x_1=\frac{(u+v)ud}2,x_2=\frac{(u+v)vd}2,x_3=\frac{uvd}2,p=du^2 + dvu + dv^2, y_1=dv^2,y_2=du^2\)
由于我们要求\((x_1,y_1)=1,(x_2,y_2)=1\),所以只能选择d=1或2.
如果d=2,我们必须要求\(x_1,x_2\)都是奇数,于是\((u+v)u,(u+v)v\)都是奇数,这是不可能的,所以可以得到d=1,u,v都是奇数。
于是通解为,u,v为任意互素的奇数,\(x_1=\frac{(u+v)u}2,x_2=\frac{(u+v)v}2,p=u^2 + vu + v^2, y_1=v^2,y_2=u^2, H=(\frac{uv(u+v)}2)^2\)
由于\(H=\frac{S^2}p\),所以如果S是整数,那么\(p=u^2+uv+v^2\)必然是完全平方数.
由此,我们可以要求\(u=s^2-t^2, v=2st+t^2\),其中t为奇数,s为偶数,而且(s,t)=1。

点评

那你这个结论比我更强  发表于 4 天前
p是半周长,\(p=(s^2+st+t^2)^2,S=st(s-t)(s+t)(s+2t)(t+2s)(s^2+ts+t^2)\)  发表于 4 天前
可以进一步化简,形如$p = 2 m^2 , 2S=m n (m^2 - n^2)$  发表于 4 天前
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 4 天前 | 显示全部楼层
反之,我们假设有一个等腰Heron三角形,对应x=z, 于是我们有\(2x+y=p, x^2yp=S^2\)
由此我们得到\(y(2x+y)=(\frac{S}x)^2\)
由于(x,y)=1, 所以\(gcd(y,2x+y)|2\).
所以只有两种可能
i) \(gcd(y,2x+y)=1, y=v^2, 2x+y=w^2,S=xvw, (v,w)=1\)
  对于可以得到\(2x=w^2-v^2, p=w^2,S=\frac{vw(w^2-v^2)}2\),这里只需要选择v,w都是奇数就可以了。
ii)\(gcd(y,2x+y)=2, y=2v^2, 2x+y=2w^2,S=2(w^2-v^2)vw, (v,w)=1, x=w^2-v^2\),这里要求(v,w)=1而且两者奇偶不同。
当然这样得到的三角形不一定存在周长面积相同的其它本原Heron三角形

点评

有道理, 那我完整统计一下,看有没有其他的解  发表于 4 天前
边长6,5,5, 周长16,面积12  发表于 4 天前
两个跟一个等腰三角形的时候都是一样的表达式$p = 2 m^2 , 2S=m n (m^2 - n^2)$  发表于 4 天前
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 4 天前 | 显示全部楼层
wayne 发表于 2025-7-14 11:49
跑了一晚上,进度并不乐观。我给出当前所有的6,7,8的解
{{3, 15865}, {4, 1457}, {5, 186}, {6, 32}, {7, 7} ...

利用这里的结论,代入$u=v$,即$q=m,p=n$得到三边是$(m^2+n^2,m^2+n^2,2(m^2-n^2))$,消除公约数$mn$,得到周长$dP=4m^2,d^2S=2mn(m^2-n^2)$
由于要求$(m,n)=1$,所以分两种情况
1) 如果m,n都是奇数,就有周长$P=2m^2,2S=mn(m^2-n^2)$
2) 如果一奇一偶,可以得到周长$P=4m^2,S=2mn(m^2-n^2)$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 4 天前 | 显示全部楼层
搜了下,找到了周长$P=4m^2$的形式.虽然不多,占比非常的少. 不到1/100.
  1. {3,{2/37,2/37},{5476,202020},{{1373,1373,2730},{533,2218,2725},{203,2570,2703}}}
  2. {3,{10/109,10/109},{47524,25682580},{{11981,11981,23562},{3434,20787,23303},{2937,21386,23201}}}
  3. {3,{195/3044,195/3044},{37063744,10955006822760},{{9303961,9303961,18455822},{3791183,14860347,18412214},{1394323,17505847,18163574}}}
  4. {3,{253/512,253/512},{1048576,51331230720},{{326153,326153,396270},{321750,330743,396083},{304937,353513,390126}}}
  5. {3,{3741/10364,3741/10364},{429649984,7243908462346920},{{121407577,121407577,186834830},{109758862,133737097,186154025},{89789375,162058187,177802422}}}
复制代码

大部分都是周长$P=2m^2$的形式
  1. {3,{5/7,5/7},{98,420},{{29,29,40},{25,34,39},{24,37,37}}}
  2. {3,{3/7,3/7},{98,420},{{29,29,40},{25,34,39},{24,37,37}}}
  3. {3,{25/31,25/31},{1922,130200},{{471,586,865},{436,625,861},{336,793,793}}}
  4. {3,{2/37,2/37},{5476,202020},{{1373,1373,2730},{533,2218,2725},{203,2570,2703}}}
  5. {4,{7/37,7/37},{2738,170940},{{709,709,1320},{445,984,1309},{319,1138,1281},{280,1229,1229}}}
  6. {3,{35/43,35/43},{3698,469560},{{1009,1009,1680},{679,1394,1625},{624,1537,1537}}}
  7. {3,{13/43,13/43},{3698,469560},{{1009,1009,1680},{679,1394,1625},{624,1537,1537}}}
  8. {3,{35/53,35/53},{5618,1469160},{{1731,1753,2134},{1599,1945,2074},{1584,2017,2017}}}
  9. {3,{35/67,35/67},{8978,3827040},{{2857,2857,3264},{2725,3044,3209},{2704,3129,3145}}}
  10. {3,{17/73,17/73},{10658,3127320},{{2809,2809,5040},{1521,4258,4879},{1360,4649,4649}}}
  11. {3,{11/91,11/91},{16562,4084080},{{4201,4201,8160},{1241,7346,7975},{1056,7753,7753}}}
  12. {3,{57/97,57/97},{18818,17029320},{{6217,6217,6384},{6175,6274,6369},{6160,6329,6329}}}
  13. {3,{55/97,55/97},{18818,17029320},{{6217,6217,6384},{6175,6274,6369},{6160,6329,6329}}}
  14. {3,{10/109,10/109},{47524,25682580},{{11981,11981,23562},{3434,20787,23303},{2937,21386,23201}}}
  15. {3,{85/113,85/113},{25538,26625060},{{7225,7414,10899},{6154,8655,10729},{5544,9997,9997}}}
  16. {4,{69/139,69/139},{38642,69822480},{{12041,12041,14560},{11677,12444,14521},{11271,13042,14329},{11040,13801,13801}}}
  17. {4,{91/139,91/139},{38642,69822480},{{12041,12041,14560},{11677,12444,14521},{11271,13042,14329},{11040,13801,13801}}}
  18. {3,{115/151,115/151},{45602,83143620},{{10201,16303,19098},{10166,16361,19075},{9576,18013,18013}}}
  19. {3,{25/157,25/157},{49298,47147100},{{12637,12637,24024},{4849,21074,23375},{4200,22549,22549}}}
  20. {3,{15/169,15/169},{57122,35915880},{{14393,14393,28336},{3151,26146,27825},{2640,27241,27241}}}
  21. {3,{135/173,135/173},{59858,136673460},{{13000,21109,25749},{11879,23153,24826},{11704,24077,24077}}}
  22. {4,{29/211,29/211},{89042,133638960},{{22681,22681,43680},{8996,37033,43013},{7575,38866,42601},{6496,41273,41273}}}
  23. {3,{119/229,119/229},{104882,521584140},{{33301,33301,38280},{31871,35186,37825},{31416,36733,36733}}}
  24. {3,{145/229,145/229},{104882,521584140},{{33301,33301,38280},{31871,35186,37825},{31416,36733,36733}}}
  25. {3,{93/247,93/247},{122018,601380780},{{34829,34829,52360},{27591,43618,50809},{26040,47989,47989}}}
  26. {3,{19/271,19/271},{146882,188144460},{{36901,36901,73080},{6409,68482,71991},{5320,70781,70781}}}
  27. {3,{119/271,119/271},{146882,955860360},{{43801,43801,59280},{42756,44881,59245},{40495,47506,58881}}}
  28. {3,{95/277,95/277},{153458,890815380},{{42877,42877,67704},{31775,56114,65569},{29640,61909,61909}}}
  29. {3,{253/307,253/307},{188498,1174385520},{{50689,51400,86409},{35001,69049,84448},{30240,79129,79129}}}
  30. {3,{105/313,105/313},{195938,1428707280},{{54497,54497,86944},{39729,72034,84175},{36960,79489,79489}}}
  31. {3,{21/331,21/331},{219122,379246560},{{55001,55001,109120},{15481,95041,108600},{8656,102841,107625}}}
  32. {3,{9/331,9/331},{219122,163070460},{{54821,54821,109480},{25105,84571,109446},{14341,95400,109381}}}
  33. {3,{37/343,37/343},{235298,737854740},{{59509,59509,116280},{15751,105698,113849},{13320,110989,110989}}}
  34. {3,{185/361,185/361},{260642,3208885680},{{82273,82273,96096},{78225,87586,94831},{76960,91841,91841}}}
  35. {3,{315/367,315/367},{269378,2049907860},{{47238,96889,125251},{39550,106969,122859},{35464,116957,116957}}}
  36. {3,{259/379,259/379},{287282,3757603080},{{84841,89917,112524},{78884,98057,110341},{76560,105361,105361}}}
  37. {3,{23/397,23/397},{315218,717148740},{{79069,79069,157080},{11375,148754,155089},{9384,152917,152917}}}
  38. {3,{115/403,115/403},{324818,3456966240},{{87817,87817,149184},{56425,124114,144279},{51520,136649,136649}}}
  39. {3,{295/419,295/419},{351122,5471746140},{{103486,106177,141459},{88861,128472,133789},{88536,131293,131293}}}
  40. {3,{41/421,41/421},{354482,1515170580},{{89461,89461,175560},{21441,160882,172159},{18040,168221,168221}}}
  41. {3,{333/437,333/437},{381938,5826660840},{{106794,110383,164761},{85556,136213,160169},{80080,150929,150929}}}
  42. {3,{49/439,49/439},{385442,2046986760},{{97561,97561,190320},{85705,109456,190281},{25337,174521,185584}}}
  43. {3,{205/439,205/439},{385442,6780943260},{{117373,117373,150696},{106375,131426,147641},{103320,141061,141061}}}
  44. {3,{51/469,51/469},{439922,2599516920},{{111281,111281,217360},{64921,158251,216750},{41497,183139,215286}}}
  45. {3,{129/469,129/469},{439922,6150531660},{{118301,118301,203320},{73761,169522,196639},{67080,186421,186421}}}
  46. {3,{175/481,175/481},{462722,8448476400},{{130993,130993,200736},{101311,166786,194625},{95200,183761,183761}}}
  47. {3,{377/487,377/487},{474338,8724624480},{{125200,142129,207009},{103321,169048,201969},{95040,189649,189649}}}
  48. {3,{301/491,301/491},{482162,11119794840},{{153961,157876,170325},{152636,159725,169801},{150480,165841,165841}}}
  49. {3,{275/499,275/499},{498002,11895760800},{{162313,162313,173376},{159401,166226,172375},{158400,169801,169801}}}
  50. {3,{301/499,301/499},{498002,11895760800},{{162313,162313,173376},{159401,166226,172375},{158400,169801,169801}}}
  51. {3,{85/503,85/503},{506018,5254247460},{{130117,130117,245784},{105721,154834,245463},{47209,224211,234598}}}
  52. {3,{377/503,377/503},{506018,10513142640},{{140721,150088,215209},{122329,171889,211800},{110880,197569,197569}}}
  53. {3,{253/512,253/512},{1048576,51331230720},{{326153,326153,396270},{321750,330743,396083},{304937,353513,390126}}}
  54. {3,{445/521,445/521},{542882,8510566260},{{112741,176389,253752},{93886,198025,250971},{73416,234733,234733}}}
  55. {3,{27/547,27/547},{598418,2204125560},{{149969,149969,298480},{18409,284818,295191},{15120,291649,291649}}}
  56. {3,{135/553,135/553},{611618,10734791760},{{162017,162017,287584},{91375,241954,278289},{82080,264769,264769}}}
  57. {3,{141/559,141/559},{624962,11531219700},{{166181,166181,292600},{96375,245506,283081},{86856,269053,269053}}}
  58. {3,{329/589,329/589},{693842,23125824540},{{227581,227581,238680},{224721,231442,237679},{223720,235061,235061}}}
  59. {3,{351/589,351/589},{693842,23125824540},{{227581,227581,238680},{224721,231442,237679},{223720,235061,235061}}}
  60. {3,{49/601,49/601},{722402,5283150600},{{181801,181801,358800},{36625,333026,352751},{30576,345913,345913}}}
  61. {3,{245/619,245/619},{766322,24502595040},{{221593,221593,323136},{181575,270706,314041},{172480,296921,296921}}}
  62. {4,{203/643,203/643},{826898,24294057480},{{227329,227329,372240},{158249,308498,360151},{150249,323491,353158},{146160,340369,340369}}}
  63. {3,{209/659,209/659},{868562,26898864300},{{238981,238981,390600},{201531,278785,388246},{154506,353431,360625}}}
  64. {3,{319/661,319/661},{873842,35335751220},{{269341,269341,335160},{248479,296242,329121},{242440,315701,315701}}}
  65. {4,{133/677,133/677},{916658,19837833120},{{238009,238009,440640},{148504,331713,436441},{111325,377689,427644},{104304,389017,423337}}}
  66. {3,{637/683,637/683},{932978,13208755560},{{168961,305328,458689},{89189,390313,453476},{60720,436129,436129}}}
  67. {3,{53/703,53/703},{988418,9154536300},{{248509,248509,491400},{46359,458434,483625},{38584,474917,474917}}}
  68. {3,{621/709,621/709},{1005362,25765712280},{{245725,280041,479596},{195286,332665,477411},{117040,444161,444161}}}
  69. {3,{31/721,31/721},{1039682,5798743440},{{260401,260401,518880},{27871,497986,513825},{22816,508433,508433}}}
  70. {3,{265/721,265/721},{1039682,42952940520},{{295033,295033,449616},{229825,373826,436031},{216240,411721,411721}}}
  71. {3,{155/727,155/727},{1057058,28425016620},{{276277,276277,504504},{138425,429794,488839},{122760,467149,467149}}}
  72. {3,{475/757,475/757},{1146098,62462492400},{{352149,383524,410425},{347449,398325,400324},{347424,399337,399337}}}
  73. {3,{165/763,165/763},{1164338,34932337440},{{304697,304697,554944},{154599,472114,537625},{137280,513529,513529}}}
  74. {3,{403/763,403/763},{1164338,64535791320},{{372289,372289,419760},{358969,389938,415431},{354640,404849,404849}}}
  75. {3,{477/763,477/763},{1164338,64535791320},{{372289,372289,419760},{358969,389938,415431},{354640,404849,404849}}}
  76. {3,{385/793,385/793},{1257698,73368455160},{{388537,388537,480624},{359569,425954,472175},{351120,453289,453289}}}
  77. {3,{13/827,13/827},{1367858,3675551880},{{342049,342049,683760},{23269,662025,682564},{11257,676779,679822}}}
  78. {3,{231/829,231/829},{1374482,60693693060},{{370301,370301,633880},{233359,528082,613041},{212520,580981,580981}}}
  79. {3,{533/853,533/853},{1455218,100822962240},{{456394,475705,523119},{450449,484520,520249},{443520,505849,505849}}}
  80. {3,{585/857,585/857},{1468898,98319770640},{{440689,452895,575314},{392562,532849,543487},{392224,538337,538337}}}
  81. {4,{177/877,177/877},{1538258,57263978100},{{400229,400229,737800},{190929,631954,715375},{177359,654770,706129},{168504,684877,684877}}}
  82. {3,{413/907,413/907},{1645298,122131649640},{{496609,496609,652080},{443751,563698,637849},{429520,607889,607889}}}
  83. {3,{651/911,651/911},{1659842,120426966660},{{436723,554646,668473},{429339,565657,664846},{406120,626861,626861}}}
  84. {3,{35/919,35/919},{1689122,13562951220},{{422893,422893,843336},{40121,813026,835975},{32760,828181,828181}}}
  85. {3,{61/931,61/931},{1733522,24506452320},{{435241,435241,863040},{70711,811922,850889},{58560,837481,837481}}}
  86. {3,{11/941,11/941},{1770962,4582180680},{{442801,442801,885360},{52294,833737,884931},{21541,865300,884121}}}
  87. {3,{305/949,305/949},{1801202,116874417660},{{496813,496813,807576},{350625,669106,781471},{324520,738341,738341}}}
  88. {3,{455/961,455/961},{1847042,156645729240},{{565273,565273,716496},{516191,628226,702625},{502320,672361,672361}}}
  89. {3,{783/967,783/967},{1870178,121902921000},{{468189,556900,845089},{458809,566905,844464},{322000,774089,774089}}}
  90. {3,{19/971,19/971},{1885682,8693906760},{{471601,471601,942480},{84511,859450,941721},{72356,871781,941545}}}
  91. {3,{901/971,901/971},{1885682,57321547920},{{313625,648001,924056},{214561,753561,917560},{131040,877321,877321}}}
  92. {3,{549/991,549/991},{1964162,185165040060},{{641741,641741,680680},{631575,655426,677161},{628056,668053,668053}}}
  93. {3,{595/991,595/991},{1964162,185165040060},{{641741,641741,680680},{631575,655426,677161},{628056,668053,668053}}}
  94. {3,{667/1027,667/1027},{2109458,208872944280},{{647685,673849,787924},{623529,707338,778591},{609840,749809,749809}}}
  95. {3,{259/1039,259/1039},{2159042,136224308220},{{573301,573301,1012440},{329161,850306,979575},{296296,931373,931373}}}
  96. {4,{209/1049,209/1049},{2200802,115838174760},{{572041,572041,1056720},{333761,824236,1042805},{272156,902725,1025921},{249771,940006,1011025}}}
  97. {3,{65/1057,65/1057},{2234498,38235156960},{{560737,560737,1113024},{85569,1050754,1098175},{70720,1081889,1081889}}}
  98. {3,{407/1057,407/1057},{2234498,204688684200},{{641449,641449,951600},{515999,794498,924001},{488400,873049,873049}}}
  99. {3,{351/1099,351/1099},{2415602,209191682700},{{665501,665501,1084600},{435601,967275,1012726},{432312,990301,992989}}}
  100. {3,{585/1117,585/1117},{2495378,295835461740},{{794957,794957,905464},{763569,836434,895375},{753480,870949,870949}}}
  101. {3,{201/1129,201/1129},{2549282,140042424480},{{657521,657521,1234240},{279825,1070626,1198831},{244416,1152433,1152433}}}
  102. {3,{39/1141,39/1141},{2603762,28932359820},{{651701,651701,1300360},{55519,1258162,1290081},{45240,1279261,1279261}}}
  103. {3,{195/1147,195/1147},{2631218,142875412680},{{676817,676817,1277584},{276025,1113394,1241799},{240240,1195489,1195489}}}
  104. {3,{469/1159,469/1159},{2686562,305302087860},{{781621,781621,1123320},{649831,944162,1092569},{619080,1033741,1033741}}}
  105. {3,{111/1189,111/1189},{2827442,92477685300},{{713021,713021,1401400},{461896,966021,1399525},{151096,1307901,1368445}}}
  106. {3,{801/1201,801/1201},{2884802,385185200400},{{865681,914720,1104401},{831505,959776,1093521},{800800,1042001,1042001}}}
  107. {3,{663/1213,663/1213},{2942738,414896582100},{{955469,955469,1031800},{935119,982738,1024881},{928200,1007269,1007269}}}
  108. {3,{737/1213,737/1213},{2942738,414896582100},{{955469,955469,1031800},{935119,982738,1024881},{928200,1007269,1007269}}}
  109. {3,{989/1237,989/1237},{3060338,337685829432},{{613065,1110925,1336348},{563873,1199585,1296880},{552048,1254145,1254145}}}
  110. {3,{665/1259,665/1259},{3170162,478419521580},{{1013653,1013653,1142856},{999496,1029141,1141525},{972287,1072594,1125281}}}
  111. {3,{213/1267,213/1267},{3210578,210488585160},{{825329,825329,1559920},{333111,1360978,1516489},{289680,1460449,1460449}}}
  112. {3,{287/1273,287/1273},{3241058,280984147080},{{851449,851449,1538160},{448175,1303394,1489489},{399504,1420777,1420777}}}
  113. {3,{451/1291,451/1291},{3333362,425990805240},{{935041,935041,1463280},{702361,1213426,1417575},{656656,1338353,1338353}}}
  114. {3,{497/1297,497/1297},{3364418,462571418400},{{964609,964609,1435200},{773409,1197634,1393375},{731584,1316417,1316417}}}
  115. {3,{73/1333,73/1333},{3553778,86194366020},{{891109,891109,1771560},{121249,1682354,1750175},{99864,1726957,1726957}}}
  116. {3,{1105/1337,1105/1337},{3575138,418501803720},{{899473,1034619,1641046},{730084,1221025,1624029},{566544,1504297,1504297}}}
  117. {3,{365/1351,365/1351},{3650402,417169372620},{{979213,979213,1691976},{601575,1412386,1636441},{546040,1552181,1552181}}}
  118. {3,{781/1351,781/1351},{3650402,641118698220},{{1216021,1216021,1218360},{1215449,1216802,1218151},{1215240,1217581,1217581}}}
  119. {3,{779/1351,779/1351},{3650402,641118698220},{{1216021,1216021,1218360},{1215449,1216802,1218151},{1215240,1217581,1217581}}}
  120. {3,{43/1387,43/1387},{3847538,57312615360},{{962809,962809,1921920},{74425,1865074,1908039},{60544,1893497,1893497}}}
  121. {3,{215/1393,215/1393},{3880898,283655308440},{{993337,993337,1894224},{370175,1666754,1843969},{319920,1780489,1780489}}}
  122. {3,{657/1393,657/1393},{3880898,690427634400},{{1186049,1186049,1508800},{1080801,1320898,1479199},{1051200,1414849,1414849}}}
  123. {3,{1025/1393,1025/1393},{3880898,635256476400},{{1050625,1209624,1620649},{955424,1332049,1593425},{889824,1495537,1495537}}}
  124. {3,{79/1409,79/1409},{3970562,110144460720},{{995761,995761,1979040},{310165,1687361,1973036},{206596,1796925,1967041}}}
  125. {3,{559/1429,559/1429},{4084082,690795776580},{{1177261,1177261,1729560},{957151,1446706,1680225},{907816,1588133,1588133}}}
  126. {3,{1025/1439,1025/1439},{4141442,752308048800},{{1185121,1272000,1684321},{1027096,1514305,1600041},{1020096,1560673,1560673}}}
  127. {3,{1073/1447,1073/1447},{4187618,731661832440},{{1151329,1272964,1763325},{962374,1537995,1687249},{942480,1622569,1622569}}}
  128. {3,{731/1459,731/1459},{4257362,850194257640},{{1331521,1331521,1594320},{1252169,1434962,1570231},{1228080,1514641,1514641}}}
  129. {3,{77/1483,77/1483},{4398578,125230985880},{{1102609,1102609,2193360},{142311,2088178,2168089},{117040,2140769,2140769}}}
  130. {3,{385/1501,385/1501},{4506002,608159239380},{{1200613,1200613,2104776},{706225,1763666,2036111},{637560,1934221,1934221}}}
  131. {3,{315/1531,315/1531},{4687922,541278803520},{{1221593,1221593,2244736},{592921,1919026,2175975},{524160,2081881,2081881}}}
  132. {3,{693/1543,693/1543},{4761698,1016154839700},{{1430549,1430549,1900600},{1268199,1635874,1857625},{1225224,1768237,1768237}}}
  133. {4,{495/1549,495/1549},{4798802,825939284940},{{1322213,1322213,2154376},{1019701,1657429,2121672},{929071,1785106,2084625},{859320,1969741,1969741}}}
  134. {3,{237/1567,237/1567},{4910978,445528531140},{{1255829,1255829,2399320},{459159,2115394,2336425},{396264,2257357,2257357}}}
  135. {3,{1407/1583,1407/1583},{5011778,586042176720},{{608609,2058884,2344285},{530729,2208449,2272600},{526240,2242769,2242769}}}
  136. {3,{553/1597,553/1597},{5100818,991149144300},{{1428109,1428109,2244600},{1065841,1860818,2174159},{995400,2052709,2052709}}}
  137. {3,{855/1609,855/1609},{5177762,1277921604960},{{1659953,1659953,1857856},{1604911,1733026,1839825},{1586880,1795441,1795441}}}
  138. {3,{1001/1609,1001/1609},{5177762,1277921604960},{{1659953,1659953,1857856},{1604911,1733026,1839825},{1586880,1795441,1795441}}}
  139. {3,{1463/1633,1463/1633},{5333378,628710029640},{{919449,1851280,2562649},{627113,2193001,2513264},{526320,2403529,2403529}}}
  140. {3,{869/1651,869/1651},{5451602,1413657325080},{{1740481,1740481,1970640},{1675575,1826386,1949641},{1654576,1898513,1898513}}}
  141. {3,{47/1657,47/1657},{5491298,106828181880},{{1373929,1373929,2743440},{97199,2668898,2725201},{78960,2706169,2706169}}}
  142. {3,{235/1663,235/1663},{5531138,529607993460},{{1410397,1410397,2710344},{483625,2405314,2642199},{415480,2557829,2557829}}}
  143. {3,{611/1699,611/1699},{5773202,1304504160960},{{1629961,1629961,2513280},{1250249,2086802,2436151},{1173120,2300041,2300041}}}
  144. {3,{249/1729,249/1729},{5978882,630162198120},{{1525721,1525721,2927440},{532641,2593282,2852959},{458160,2760361,2760361}}}
  145. {3,{799/1729,799/1729},{5978882,1623946789920},{{1813921,1813921,2351040},{1634431,2042626,2301825},{1585216,2196833,2196833}}}
  146. {3,{581/1759,581/1759},{6188162,1408552776540},{{1715821,1715821,2756520},{1236375,2283586,2668201},{1148056,2520053,2520053}}}
  147. {3,{85/1807,85/1807},{6530498,250208098140},{{1636237,1636237,3258024},{191479,3115394,3223625},{157080,3186709,3186709}}}
  148. {3,{913/1813,913/1813},{6573938,2030518482300},{{2060269,2060269,2453400},{1942369,2214194,2417375},{1906344,2333797,2333797}}}
  149. {3,{909/1819,909/1819},{6617522,2052354344040},{{2067521,2067521,2482480},{2053936,2081409,2482177},{1922233,2272803,2422486}}}
  150. {3,{539/1831,539/1831},{6705122,1510977417180},{{1821541,1821541,3062040},{1200089,2543522,2961511},{1099560,2802781,2802781}}}
  151. {3,{765/1867,765/1867},{6971378,2071301105160},{{2035457,2035457,2900464},{1705959,2442994,2822425},{1627920,2671729,2671729}}}
  152. {3,{931/1891,931/1891},{7151762,2384731325760},{{2221321,2221321,2709120},{2070601,2416786,2664375},{2025856,2562953,2562953}}}
  153. {3,{1105/1933,1105/1933},{7472978,2686471531380},{{2478757,2478757,2515464},{2469649,2491154,2512175},{2466360,2503309,2503309}}}
  154. {3,{1127/1933,1127/1933},{7472978,2686471531380},{{2478757,2478757,2515464},{2469649,2491154,2512175},{2466360,2503309,2503309}}}
  155. {3,{51/1951,51/1951},{7612802,189240951900},{{1904501,1904501,3803800},{124201,3708226,3780375},{100776,3756013,3756013}}}
  156. {3,{255/1957,255/1957},{7659698,939389472420},{{1947437,1947437,3764824},{618175,3366514,3675009},{528360,3565669,3565669}}}
  157. {3,{819/1969,819/1969},{7753922,2585176694100},{{2273861,2273861,3206200},{2110066,2451145,3192711},{1884425,2784311,3085186}}}
  158. {3,{89/1981,89/1981},{7848722,345251809980},{{1966141,1966141,3916440},{219825,3752146,3876751},{180136,3834293,3834293}}}
  159. {3,{663/1993,663/1993},{7944098,2333837120160},{{2205809,2205809,3532480},{1597999,2926498,3419601},{1485120,3229489,3229489}}}
  160. {3,{445/1999,445/1999},{7992002,1689254270340},{{2097013,2097013,3797976},{1091575,3222146,3678281},{971880,3510061,3510061}}}
  161. {3,{801/2041,801/2041},{8331362,2880655235640},{{2403641,2403641,3524080},{1958481,2948962,3423919},{1858320,3236521,3236521}}}
  162. {3,{273/2077,273/2077},{8627858,1201914413700},{{2194229,2194229,4239400},{702321,3787858,4137679},{600600,4013629,4013629}}}
  163. {3,{1157/2107,1157/2107},{8878898,3779563569600},{{2889049,2889049,3100800},{2832999,2964274,3081625},{2813824,3032537,3032537}}}
  164. {3,{371/2119,371/2119},{8980322,1710864622740},{{2313901,2313901,4352520},{969689,3781922,4228711},{845880,4067221,4067221}}}
  165. {3,{583/2137,583/2137},{9133538,2633073606240},{{2453329,2453329,4226880},{1519375,3526114,4088049},{1380544,3876497,3876497}}}
  166. {3,{1001/2161,1001/2161},{9339842,3967150747560},{{2835961,2835961,3667920},{2558721,3189442,3591679},{2482480,3428681,3428681}}}
  167. {3,{783/2177,783/2177},{9478658,3516775783920},{{2676209,2676209,4126240},{2308839,3075994,4093825},{1932879,3708466,3837313}}}
  168. {4,{525/2189,525/2189},{9583442,2595005212800},{{2533673,2533673,4516096},{1951520,3139721,4492201},{1650089,3483596,4449757},{1617721,3522985,4442736}}}
  169. {3,{1007/2197,1007/2197},{9653618,4217635078020},{{2920429,2920429,3812760},{2619359,3303218,3731041},{2537640,3557989,3557989}}}
  170. {3,{1219/2239,1219/2239},{10026242,4813411200780},{{3249541,3249541,3527160},{3175081,3349186,3501975},{3149896,3438173,3438173}}}
  171. {4,{285/2263,285/2263},{10242338,1625268541260},{{2601197,2601197,5039944},{813775,4500249,4928314},{799239,4520674,4922425},{681720,4780309,4780309}}}
  172. {3,{55/2269,55/2269},{10296722,321056103060},{{2575693,2575693,5145336},{155791,5025106,5115825},{126280,5085221,5085221}}}
  173. {3,{665/2293,665/2293},{10515698,3671540089140},{{2850037,2850037,4815624},{1855329,4002994,4657375},{1697080,4409309,4409309}}}
  174. {3,{715/2311,715/2311},{10681442,3990045079020},{{2925973,2925973,4829496},{2005081,4004386,4671975},{1847560,4416941,4416941}}}
  175. {5,{935/2341,935/2341},{10960562,5040948292380},{{3177253,3177253,4606056},{2696344,3742237,4521981},{2619071,3863666,4477825},{2495761,4172590,4292211},{2490840,4234861,4234861}}}
  176. {3,{1045/2347,1045/2347},{11016818,5415844822080},{{3300217,3300217,4416384},{2910919,3791474,4314425},{2808960,4103929,4103929}}}
  177. {3,{97/2353,97/2353},{11073218,630766827600},{{2773009,2773009,5527200},{284641,5313218,5475359},{232800,5420209,5420209}}}
  178. {3,{485/2371,485/2371},{11243282,3097014141480},{{2928433,2928433,5386416},{1413975,4607506,5221801},{1249360,4996961,4996961}}}
  179. {3,{873/2413,873/2413},{11645138,5330032410780},{{3292349,3292349,5060440},{2536209,4203154,4905775},{2381544,4631797,4631797}}}
  180. {3,{399/2449,399/2449},{11995202,2852499199200},{{3078401,3078401,5838400},{1206751,5109826,5678625},{1046976,5474113,5474113}}}
  181. {3,{627/2467,627/2467},{12172178,4402960882320},{{3239609,3239609,5692960},{1890889,4773778,5507511},{1705440,5233369,5233369}}}
  182. {3,{1261/2479,1261/2479},{12290882,7120008435540},{{3867781,3867781,4555320},{3664375,4134146,4492361},{3601416,4344733,4344733}}}
  183. {3,{2363/2513,2363/2513},{12630338,2171606688300},{{1519669,4906005,6204664},{1048294,5426403,6155641},{731400,5949469,5949469}}}
  184. {3,{1081/2523,1081/2523},{12731058,7087009117692},{{3767045,3767045,5196968},{3329000,4286165,5115893},{3118325,4772840,4839893}}}
  185. {3,{101/2551,101/2551},{13015202,837030803700},{{3258901,3258901,6497400},{321351,6255202,6438649},{262600,6376301,6376301}}}
  186. {3,{505/2569,505/2569},{13199522,4115655762960},{{3427393,3427393,6344736},{1596625,5448866,6154031},{1405920,5896801,5896801}}}
  187. {3,{1311/2569,1311/2569},{13199522,8219571298680},{{4159241,4159241,4881040},{3946639,4437922,4814961},{3880560,4659481,4659481}}}
  188. {3,{59/2611,59/2611},{13634642,524832619080},{{3410401,3410401,6813840},{192329,6665042,6777271},{155760,6739441,6739441}}}
  189. {3,{909/2611,909/2611},{13634642,7109564172480},{{3821801,3821801,5991040},{2863575,4967506,5803561},{2676096,5479273,5479273}}}
  190. {3,{295/2617,295/2617},{13697378,2610053016480},{{3467857,3467857,6761664},{957775,6123874,6615729},{811840,6442769,6442769}}}
  191. {3,{767/2653,767/2653},{14076818,6562516566060},{{3813349,3813349,6450120},{2476175,5362514,6238129},{2264184,5906317,5906317}}}
  192. {3,{309/2659,309/2659},{14140562,2865355949400},{{3582881,3582881,6974800},{1019031,6300562,6820969},{865200,6637681,6637681}}}
  193. {3,{1313/2677,1313/2677},{14332658,9564678303180},{{4445149,4445149,5442360},{4135521,4846258,5350879},{4044040,5144309,5144309}}}
  194. {3,{1003/2683,1003/2683},{14396978,8332133555760},{{4102249,4102249,6192480},{3233689,5155378,6007911},{3049120,5673929,5673929}}}
  195. {3,{721/2689,721/2689},{14461442,6505423053360},{{3875281,3875281,6710880},{2365825,5604866,6490751},{2145696,6157873,6157873}}}
  196. {3,{2001/2731,2001/2731},{14916722,9438574088580},{{4265925,4426501,6224296},{3590602,5295809,6030311},{3454360,5731181,5731181}}}
  197. {3,{1133/2743,1133/2743},{15048098,9696954687420},{{4403869,4403869,6240360},{3709959,5263714,6074425},{3544024,5752037,5752037}}}
  198. {3,{1475/2767,1475/2767},{15312578,11184185499900},{{4915957,4915957,5480664},{4759625,5123714,5429239},{4708200,5302189,5302189}}}
  199. {3,{427/2803,427/2803},{15713618,4592719648440},{{4019569,4019569,7674480},{1479625,6761554,7472439},{1277584,7218017,7218017}}}
  200. {3,{671/2821,671/2821},{15916082,7105723524900},{{4204141,4204141,7507800},{2318591,6330866,7266625},{2077416,6919333,6919333}}}
  201. {3,{1545/2821,1545/2821},{15916082,12140483415060},{{5172533,5172533,5571016},{5066625,5314546,5534911},{5030520,5442781,5442781}}}
  202. {3,{321/2869,321/2869},{16462322,3742791992940},{{4167101,4167101,8128120},{1142625,7366066,7953631},{968136,7747093,7747093}}}
  203. {3,{1159/2881,1159/2881},{16600322,11614785956760},{{4821721,4821721,6956880},{3993439,5841922,6764961},{3801520,6399401,6399401}}}
  204. {3,{749/2899,749/2899},{16808402,8515170081600},{{4482601,4482601,7843200},{2652951,6568402,7587049},{2396800,7205801,7205801}}}
  205. {3,{1403/2923,1403/2923},{17087858,13483001839440},{{5256169,5256169,6575520},{4835129,5798258,6454471},{4714080,6186889,6186889}}}
  206. {3,{1219/2939,1219/2939},{17275442,12811094299080},{{5061841,5061841,7151760},{4951465,5174701,7149276},{4227856,6123825,6923761}}}
  207. {3,{1177/2953,1177/2953},{17440418,12746851526640},{{5052769,5052769,7334880},{4159441,6150818,7130159},{3954720,6742849,6742849}}}
  208. {3,{441/2969,441/2969},{17629922,5643522228960},{{4504721,4504721,8620480},{3402609,5621386,8605927},{1463001,7874545,8292376}}}
  209. {3,{109/2971,109/2971},{17653682,1427313915720},{{4419361,4419361,8814960},{403975,8509106,8740601},{329616,8662033,8662033}}}
  210. {3,{63/2977,63/2977},{17725058,830715893280},{{4433249,4433249,8858560},{234175,8676994,8813889},{189504,8767777,8767777}}}
  211. {3,{315/2983,315/2983},{17796578,4133998246140},{{4498757,4498757,8799064},{1166425,8012194,8617959},{985320,8405629,8405629}}}
  212. {3,{545/2989,545/2989},{17868242,7034936284740},{{4615573,4615573,8637096},{2007825,7474066,8386351},{1757080,8055581,8055581}}}
复制代码

评分

参与人数 1威望 +16 金币 +16 贡献 +16 经验 +16 鲜花 +16 收起 理由
northwolves + 16 + 16 + 16 + 16 + 16 赞一个!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-8-24 02:34 , Processed in 0.026911 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表