- 注册时间
- 2008-1-13
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 21012
- 在线时间
- 小时
|
楼主 |
发表于 2009-1-9 15:19:41
|
显示全部楼层
郁闷。昨天咋没搜到呢?
A006600 Triangles in regular n-gon.
A006600 Triangles in regular n-gon.
(Formerly M4513) +0
12
1, 8, 35, 110, 287, 632, 1302, 2400, 4257, 6956, 11297, 17234, 25935, 37424, 53516, 73404, 101745, 136200, 181279, 236258, 306383, 389264, 495650, 620048, 772785, 951384, 1167453, 1410350, 1716191, 2058848, 2463384, 2924000, 3462305, 4067028, 4776219, 5568786, 6479551 (list; graph; listen)
OFFSET 3,2
COMMENT Place n equally-spaced points on a circle, join them in all possible ways; how many triangles can be seen?
LINKS T. D. Noe, Table of n, a(n) for n=3..1000
Sascha Kurz, m-gons in regular n-gons
B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998).
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv version, which has fewer typos than the SIAM version.
B. Poonen and M. Rubinstein, Mathematica programs for these sequences
D. Radcliffe, Counting triangles in a regular polygon
T. Sillke, Number of triangles for convex n-gon
S. E. Sommars and T. Sommars, Number of Triangles Formed by Intersecting Diagonals of a Regular Polygon, J. Integer Sequences, 1 (1998), #98.1.5.
Sequences formed by drawing all diagonals in regular polygon
EXAMPLE a(4) = 8 because in a quadrilateral the diagonals cross to make four triangles, which pair up to make four more.
MATHEMATICA del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; Tri[n_]:=n(n-1)(n-2)(n^3+18n^2-43n+60)/720 - del[2, n](n-2)(n-7)n/8 - del[4, n](3n/4) - del[6, n](18n-106)n/3 + del[12, n]*33n + del[18, n]*36n + del[24, n]*24n - del[30, n]*96n - del[42, n]*72n - del[60, n]*264n - del[84, n]*96n - del[90, n]*48n - del[120, n]*96n - del[210, n]*48n; Table[Tri[n], {n, 3, 1000}] - T. D. Noe (noe(AT)sspectra.com), Dec 21 2006
CROSSREFS Often confused with A005732.
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
Adjacent sequences: A006597 A006598 A006599 this_sequence A006601 A006602 A006603
Sequence in context: A136016 A100907 A058102 this_sequence A005732 A040977 A036598
KEYWORD nonn,easy,nice
AUTHOR njas
EXTENSIONS a(3)...a(8) computed by Victor Meally (personal communication); later terms and recurrence from S. Sommars and T. Sommars. |
|