找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
发表于 2024-10-30 18:53:19 | 显示全部楼层
$a_n=10^{n-1}-8\* 9^{n-2},a_1=1$

评分

参与人数 1威望 +8 金币 +8 贡献 +8 经验 +8 鲜花 +8 收起 理由
王守恩 + 8 + 8 + 8 + 8 + 8 OEIS没有这串数

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-1 13:50:13 | 显示全部楼层
{\[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi], \[Pi]}
  1. Table[(Gamma[n + 1/2]/((2 n - 1)!! 2^-n))^2, {n, 29}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-4 15:38:00 | 显示全部楼层
{1, 4, 10, 20, 35, 56, 084, 120, 165, 220, 286, 364, 455, 560, 0680, 0816, 0969, 1140, 1330},
{1, 5, 14, 30, 55, 91, 140, 204, 285, 385, 506, 650, 819, 1015, 1240, 1496, 1785, 2109, 2470},
{1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610},
{1, 7, 22, 50, 95, 161, 252, 372, 525, 715, 946, 1222, 1547, 1925, 2360, 2856, 3417, 4047, 4750},
{1, 8, 26, 60, 115, 196, 308, 456, 645, 880, 1166, 1508, 1911, 2380, 2920, 3536, 4233, 5016, 5890},
{1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, 1386, 1794, 2275, 2835, 3480, 4216, 5049, 5985, 7030},
{1, 10, 34, 80, 155, 266, 420, 624, 885, 1210, 1606, 2080, 2639, 3290, 4040, 4896, 5865, 6954, 8170},
{1, 11, 38, 90, 175, 301, 476, 708, 1005, 1375, 1826, 2366, 3003, 3745, 4600, 5576, 6681, 7923, 9310},
{1, 12, 42, 100, 195, 336, 532, 792, 1125, 1540, 2046, 2652, 3367, 4200, 5160, 6256, 7497, 8892, 10450}
  1. Table[((k (n - 1) + 3) n (n + 1))/6, {k, 9}, {n, 19}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-5 11:25:04 | 显示全部楼层
n位数, 各位数字之和等于n。

这样的1位数有1个。

这样的2位数有2个。

这样的3位数有6个。

这样的4位数有20个。

这样的5位数有70个。

这样的6位数有252个。

这样的7位数有924个。

这样的8位数有3432个。

这样的9位数有12870个。

点评

各项似乎等于 C(2n,n)=(2n)!/(n!)^2  发表于 2024-11-7 17:26
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-11-7 17:27:21 | 显示全部楼层
已确认。
A000984
Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.

1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, 40116600, 155117520, 601080390, 2333606220, 9075135300, 35345263800, 137846528820, 538257874440, 2104098963720, 8233430727600, 32247603683100, 126410606437752, 495918532948104, 1946939425648112

王老师可以尝试用生成函数证明或解释一下

点评

不是A000984,而是A071976。  发表于 2024-11-22 16:55
1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48619, 184735, 705222, 2702609, 10390940,  发表于 2024-11-22 16:53
A000984——好像没有这样的条文。  发表于 2024-11-7 19:03
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-14 07:40:30 | 显示全部楼层
a(1)=1,{1},
a(2)=2,{12},{21},
a(3)=3,{112},{121},{211},
a(4)=6,{1122},{1212},{1221},{2112},{2121},{2211},6=3*2
a(5)=10,{11122},{11212},{11221},{12112},{12121},{12211},{21112},{211121},{21211},{22111},10=6+4?
a(6)=20,{111222},{112122},{112212},{112221},{121122},{121212},{121221},{122112},{122121},{122211},20=10*2
a(7)=35,{2111122},{2111212},{2111221},{2112112},{2112121},{2112211},{2121112},{2121121},{2121211},{2122111},{2211112},{2211121},{2211211},{2212111},{2221111},35=20+15?
a(8)=70,70=35*2
a(9)=126,126=70+56?
a(10)=252,252=126*2
a(11)=462,462=252+210?
a(12)=924,924=462*2
a(13)=1716,1716=924+792?
a(14)=3432,3432=1716*2
a(15)=6435,6435=3432+3003?
a(16)=12870,12870=6435*2
......
1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 462, 924, 1716, 3432, 6435, 12870, 24310, 48620, 92378, 184756, 352716, 705432,

是这串数吗?要不就是 ?处有问题了。

如果是这串数, OEIS应该有上面的条文清晰简单些。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-14 07:47:03 | 显示全部楼层
这通项公式还是比OEIS——A131708——好一些。

{1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365, 2731, 5462, 10923, 21845, 43690, 87381, 174763, 349526, 699051, 1398101, 2796202, 5592405, 11184811}

  1. Table[Round[(2^n + Sin[n*Pi/3])/3], {n, 25}]
复制代码

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-15 15:04:44 | 显示全部楼层
楼上的通项公式可以有更好的。

(2^n + 2 Cos[(n - 2)*Pi/3])/3=(2^n - 2 Cos[(n + 1)*Pi/3])/3=Round[(2^n + Sin[n*Pi/3])/3]

{1, 2, 3, 5, 10, 21, 43, 86, 171, 341, 682, 1365, 2731, 5462, 10923, 21845, 43690, 87381, 174763, 349526, 699051, 1398101, 2796202, 5592405, 11184811}



毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-22 16:26:21 | 显示全部楼层
数码和是11倍数的n位数。

这样的1位数有0个。
这样的2位数有8个。
这样的3位数有82个。
这样的4位数有818个。

0,
8,
82,
818,
8182,
81818,
818182,
8181818,
81818182,
818181818,
8181818181,
81818181819,
818181818182,
8181818181818,
81818181818182,
818181818181818,
8181818181818182,
81818181818181818,
818181818181818182,
8181818181818181818,
81818181818181818182,
818181818181818181819,
8181818181818181818181,
81818181818181818181818,
818181818181818181818182,
8181818181818181818181818,
81818181818181818181818182,
818181818181818181818181818,
8181818181818181818181818182,
81818181818181818181818181818,
818181818181818181818181818182,
8181818181818181818181818181818,
81818181818181818181818181818181,
818181818181818181818181818181819,
8181818181818181818181818181818182,
81818181818181818181818181818181818,
818181818181818181818181818181818182,
8181818181818181818181818181818181818,
81818181818181818181818181818181818182,
818181818181818181818181818181818181818,
8181818181818181818181818181818181818182,
81818181818181818181818181818181818181818,
818181818181818181818181818181818181818182,
8181818181818181818181818181818181818181819,
81818181818181818181818181818181818181818181,
818181818181818181818181818181818181818181818,
8181818181818181818181818181818181818181818182,
81818181818181818181818181818181818181818181818,
818181818181818181818181818181818181818181818182,
8181818181818181818181818181818181818181818181818,
81818181818181818181818181818181818181818181818182,
818181818181818181818181818181818181818181818181818,
8181818181818181818181818181818181818181818181818182,
81818181818181818181818181818181818181818181818181818,
818181818181818181818181818181818181818181818181818181,
8181818181818181818181818181818181818181818181818181819,
81818181818181818181818181818181818181818181818181818182,
818181818181818181818181818181818181818181818181818181818,
8181818181818181818181818181818181818181818181818181818182,
81818181818181818181818181818181818181818181818181818181818,
818181818181818181818181818181818181818181818181818181818182,
8181818181818181818181818181818181818181818181818181818181818,
81818181818181818181818181818181818181818181818181818181818182,
818181818181818181818181818181818181818181818181818181818181818,
8181818181818181818181818181818181818181818181818181818181818182,
81818181818181818181818181818181818181818181818181818181818181819,
818181818181818181818181818181818181818181818181818181818181818181}
  1. Table[(9*10^n - Cos[n Pi/11] - Cos[3 n Pi/11] - Cos[5 n Pi/11] - Cos[7 n Pi/11] - Cos[9 n Pi/11] - Cos[13 n Pi/11] - Cos[15 n Pi/11] - Cos[17 n Pi/11]
  2. - Cos[19 n Pi/11] - Cos[21 n Pi/11] + Cos[(n + 1) Pi/11] + Cos[3 (n + 1) Pi/11] + Cos[5 (n + 1) Pi/11] - Cos[(13 n + 2) Pi/11] - Cos[(15 n + 4) Pi/11]
  3. - Sin[(14 n + 3) Pi/22] + Sin[3 (14 n + 3) Pi/22] -  Sin[(18 n + 7) Pi/22] + Sin[(34 n + 1) Pi/22] + Sin[(38 n + 5) Pi/22])/11, {n, 0, 22}] // FullSimplify
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-11-29 15:18:36 | 显示全部楼层
谢谢 mathe!!! 这公式还是厉害些!
Table[NestList[Dot[NestList[RotateRight, IntegerDigits[2^k + 2^9 - 1, 2, k + 1], k], #] &, IntegerDigits[2^k - 2^(k - 9), 2, k + 1], 17][[All, 1]], {k, 9, 28}]

(01)。数码和是1倍数的n位数。{9, 90, 900, 9000, 90000, 900000, 9000000, 90000000, 900000000, 9000000000, 90000000000, 900000000000, 9000000000000, 90000000000000, 900000000000000, 9000000000000000, 90000000000000000}
(02)。数码和是2倍数的n位数。{4, 45, 450, 4500, 45000, 450000, 4500000, 45000000, 450000000, 4500000000, 45000000000, 450000000000, 4500000000000, 45000000000000, 450000000000000, 4500000000000000, 45000000000000000}
(03)。数码和是3倍数的n位数。{3, 30, 300, 3000, 30000, 300000, 3000000, 30000000, 300000000, 3000000000, 30000000000, 300000000000, 3000000000000, 30000000000000, 300000000000000, 3000000000000000, 30000000000000000}
(04)。数码和是4倍数的n位数。{2, 22, 224, 2249, 22500, 225002, 2250004, 22500004, 225000000, 2249999992, 22499999984, 224999999984, 2250000000000, 22500000000032, 225000000000064, 2250000000000064, 22500000000000000}
(05)。数码和是5倍数的n位数。{1, 18, 180, 1800, 18000, 180000, 1800000, 18000000, 180000000, 1800000000, 18000000000, 180000000000, 1800000000000, 18000000000000, 180000000000000, 1800000000000000, 18000000000000000}
(06)。数码和是6倍数的n位数。{1, 14, 151, 1503, 14997, 149991, 1500009, 15000027, 149999973, 1499999919, 15000000081, 150000000243, 1499999999757, 14999999999271, 150000000000729, 1500000000002187, 14999999999997813}
(07)。数码和是7倍数的n位数。{1, 12, 126, 1282, 12860, 128598, 1285774, 12857176, 128571220, 1285713534, 12857141804, 128571429416, 1285714293398, 12857142874408, 128571428581010, 1285714285653962, 12857142856925458}
(08)。数码和是8倍数的n位数。{1, 11, 112, 1124, 11248, 112496, 1124992, 11249985, 112499976, 1124999972, 11249999992, 112500000074, 1125000000280, 11250000000692, 112500000001384, 1125000000002340, 11250000000003264}
(09)。数码和是9倍数的n位数。{1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 10000000000, 100000000000, 1000000000000, 10000000000000, 100000000000000, 1000000000000000, 10000000000000000}
(10)。数码和是10倍数的n位数。{0, 9, 90, 900, 9000, 90000, 900000, 9000000, 90000000, 900000000, 9000000000, 90000000000, 900000000000, 9000000000000, 90000000000000, 900000000000000, 9000000000000000, 90000000000000000}
(11)。数码和是11倍数的n位数。{0, 8, 82, 818, 8182, 81818, 818182, 8181818, 81818182, 818181818, 8181818181, 81818181819, 818181818182, 8181818181818, 81818181818182, 818181818181818, 8181818181818182, 81818181818181818}
(12)。数码和是12倍数的n位数。{0, 7, 76, 748, 7504, 74993, 749994, 7500059, 74999910, 750000001, 7500000200, 74999999501, 750000000944, 7499999999031, 74999999998090, 750000000009683, 7499999999984066, 75000000000005245}
(13)。数码和是13倍数的n位数。{0, 6, 72, 684, 6933, 69297, 692049, 6923265, 69231861, 692302884, 6923085159, 69230782122, 692307584595, 6923077148598, 69230769343458, 692307690281355, 6923076928701546, 69230769228514479}
(14)。数码和是14倍数的n位数。{0, 5, 70, 630, 6375, 64601, 642645, 6425599, 64297713, 642856767, 6428421494, 64286170240, 642857602231, 6428564424863, 64285730047092, 642857181352496, 6428571116489480, 64285714761152326}
(15)。数码和是15倍数的n位数。{0, 4, 69, 603, 5817, 60378, 602133, 5987904, 59994303, 600225342, 5999520723, 59997327243, 600015197949, 6000007240428, 59999717638617, 600000601182243, 6000003351236328, 59999980942125519}
(16)。数码和是16倍数的n位数。{0, 3, 66, 599, 5332, 55956, 569584, 5618444, 56103129, 562918205, 5627520744, 56235963162, 562469405642, 5625371327946, 56250000000692, 562491672466081, 5625015387280082, 56250158324512242}
(17)。数码和是17倍数的n位数。{0, 2, 61, 607, 5005, 51090, 539103, 5335482, 52635691, 528573446, 5303297495, 52955278635, 529146620809, 5293987371496, 52948567080626, 529408195240026, 5293918597046695, 52941466543240964}
(18)。数码和是18倍数的n位数。{0, 1, 54, 616, 4884, 46300, 503700, 5118916, 49881084, 496175516, 5003824484, 50123007764, 499876992236, 4996043649836, 50003956350164, 500127249814052, 4999872750185948, 49995907208582972}
(19)。数码和是19倍数的n位数。{0, 0, 45, 615, 4950, 42459, 461055, 4904064, 47998149, 468183583, 4708257444, 47541493289, 474905200991, 4731718185444, 47318535154702, 473822169622558, 4738808901078066, 47365330213246505}
(20)。数码和是20倍数的n位数。{0, 0, 36, 597, 5124, 40242, 415140, 4624980, 46674240, 448239640, 4428061744, 44928061744, 452795788288, 4508531241376, 44902816850752, 449457017475904, 4502885274370048, 45027958693108096}
(21)。数码和是21倍数的n位数。{0, 0, 28, 564, 5318, 39814, 373327, 4257781, 45247819, 436940959, 4203612028, 42237989270, 430403180040, 4318885704619, 42873915907996, 427136419253877, 4280690450082956, 42906423299276119},
(22)。数码和是22倍数的n位数。{0, 0, 21, 519, 5465, 40909, 342531, 3830055, 43107021, 430324609, 4067803414, 39791380024, 405828327164, 4132191361796, 41228700104788, 408346458179408, 4072530775092692, 40873078728369612},
(23)。数码和是23倍数的n位数。{0, 0, 15, 465, 5520, 42999, 326796, 3402165, 40005165, 421929825, 4015305614, 38039545603, 380763807239, 3918682413337, 39702546659487, 393767982767586, 3895329112873457, 38917753783501426},
(24)。数码和是24倍数的n位数。{0, 0, 10, 405, 5460, 45464, 326556, 3039256, 36126849, 406147125, 4001610250, 37219365121, 359631428364, 3678322478042, 37935664292588, 381392881265011, 3762350098218829, 37219852374909939},
(25)。数码和是25倍数的n位数。{0, 0, 6, 342, 5283, 47757, 339291, 2789685, 31952940, 380512875, 3965587680, 37181174265, 346581662075, 3445279720300, 35772868790700, 367441289159325, 3661162712706600, 35966744400571500},
(26)。数码和是26倍数的n位数。{0, 0, 3, 279, 4998, 49488, 360864, 2675682, 28056429, 346151442, 3856245834, 37461129369, 342920665075, 3266992419028, 33407288613937, 349150070540774, 3555835163480783, 35114955454707434},
(27)。数码和是27倍数的n位数。{0, 0, 1, 219, 4620, 50413, 386727, 2694120, 24930511, 306816399, 3649461057, 37492291378, 346450438830, 3176913779355, 31275582443221, 326843073213153, 3410727440409699, 34351481452917616},
(28)。数码和是28倍数的n位数。{0, 0, 0, 165, 4170, 50412, 412764, 2823018, 22890318, 267392223, 3351046590, 36813730077, 352560385658, 3178406721221, 29819823777614, 303860739629215, 3214285558244740, 33280426266832651},
(29)。数码和是29倍数的n位数。{0, 0, 0, 120, 3675, 49467, 435765, 3030213, 22046520, 232528065, 2989841118, 35193107787, 356061516838, 3245017470529, 29280382725973, 284803132371826, 2986317296390089, 31665783163960501},
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-27 11:31 , Processed in 0.026718 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表