找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2024-12-19 12:12:23 | 显示全部楼层
在集合{1, 2, 3, 4, 5, ..., 2025}, 取其中25个不同数, 满足25个数能组成等差数列(公差>0), 有多少种取法?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-12-19 13:12:15 | 显示全部楼层
本帖最后由 northwolves 于 2024-12-19 16:00 编辑

设等差数列为$\{a,a+d,a+2d,...a+23d,a+24d\}$,则有$a \in[1,2021],a+24d<=2025$
故 $\sum _{a=1}^{2021} \lfloor \frac{2025-a}{24} \rfloor=84420$ 即所求。

评分

参与人数 1威望 +12 金币 +12 贡献 +12 经验 +12 鲜花 +12 收起 理由
王守恩 + 12 + 12 + 12 + 12 + 12 一两拨千金!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-12-19 18:39:40 | 显示全部楼层
northwolves 发表于 2024-12-19 13:12
设等差数列为$\{a,a+d,a+2d,...a+23d,a+24d\}$,则有$a \in[1,2021],a+24d

恰好对上???

Sum[Floor[a/24], {a, 2024}]=84420.

在集合{1, 2, 3, 4, 5, ..., n}, 取其中k个不同数, 满足k个数能组成等差数列(公差>0), 有多少种取法?

Table[Sum[Floor[a/(k - 1)], {a, n - 1}], {k, 2, 9}, {n, k, 40}]
{1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780},
{1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380},
{1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247},
{1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180},
{1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140},
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114},
{1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95},
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80},

第1行 = 下面若干项的和。譬如:k=9
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168, 175, 182, 189, 196,
  1, 2, 3, 4, 5, 6, 7, 8, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 036, 037, 038, 039, 040, 041, 042, 043, 044, 045, 046, 047, 048, 049, 050, 051, 052,
                               01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 028, 029, 030, 031, 032, 033, 034, 035, 036, 037, 038, 039, 040, 041, 042, 043, 044,
                                                                           01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035, 036,  
                                                                                                                       01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 012, 013, 014, 015, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028,  
                                                                                                                                                                   01, 02, 03, 004, 005, 006, 007, 008, 009, 010, 011, 012, 013, 014, 015, 016, 017, 018, 019, 020,
                                                                                                                                                                                                                        001, 002, 003, 004, 005, 006, 007, 008, 009, 010, 011, 012,
                                                                                                                                                                                                                                                                                  001, 002, 003, 004,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-12-20 10:41:55 | 显示全部楼层
northwolves 发表于 2024-12-19 13:12
设等差数列为$\{a,a+d,a+2d,...a+23d,a+24d\}$,则有$a \in[1,2021],a+24d

错在哪里?哪里错了?

在集合{1, 2, 3, 4, 5, ..., n}, 取其中k个不同数, 满足k个数能组成等差数列(公差>0), 有多少种取法?

Table[Floor[((n - Floor[k/2]) (n - Floor[(k - 1)/2]))/(2 (k - 1))], {k, 2, 9}, {n, k, 40}]

{1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780},
{1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380},
{1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247},
{1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180},
{1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140},
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114},
{1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95},
{1, 2, 3, 4, 5, 6, 7, 9, 10, 12, 14, 16, 18, 20, 22, 25, 27, 30, 33, 36, 39, 42, 45, 49, 52, 56, 60, 64, 68, 72, 76, 81}}

Table[Floor[((n - Floor[k/2]) (n - Floor[(k - 1)/2]))/(2 (k - 1))], {k, 25, 25}, {n, 2020, 2025}]

{{84001, 84085, 84168, 84252, 84336, 84420}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-12-20 14:02:21 | 显示全部楼层
本帖最后由 northwolves 于 2024-12-20 14:03 编辑
王守恩 发表于 2024-12-20 10:41
错在哪里?哪里错了?

在集合{1, 2, 3, 4, 5, ..., n}, 取其中k个不同数, 满足k个数能组成等差数列(公差> ...

  1. Table[Floor[n (n-24)/48]+3,{n,2020,2025}]
复制代码

  1. Table[Floor[(n - 12)^2/48], {n, 2020, 2025}]
复制代码

点评

若583#=正确的通吃公式(思路在下半部分)。584#=错误, 585#这2个=错误。  发表于 2024-12-20 16:36
若583#=正确的通吃公式。剩下就是——能不能简化——能不能把Sum去掉。  发表于 2024-12-20 16:10
能确认:583#=正确。  发表于 2024-12-20 15:50
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-12-20 15:54:15 | 显示全部楼层
这两个是等价的
$\sum _{i=1}^{k+1} \lfloor \frac{n-i}{k-1}\rfloor -\sum _{i=1}^{n-k+1} \lfloor \frac{n-i}{k-1}\rfloor$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-12-20 17:05:53 | 显示全部楼层
本帖最后由 王守恩 于 2024-12-20 17:32 编辑
northwolves 发表于 2024-12-20 15:54
这两个是等价的
$\sum _{i=1}^{k+1} \lfloor \frac{n-i}{k-1}\rfloor -\sum _{i=1}^{n-k+1} \lfloor \frac{ ...

583#应该是正确的通吃公式。OEIS没有这么流畅的。当然,如果还能简化,我们也不能错过。
第1行 = 下面若干项的和。第2行=公差=1,第3行=公差=2,第4行=公差=3,... 譬如:k=9
n=09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 044, 045, 046, 047, 048, 049, 050, 051, 052, 053, 054, 055, 056, 057, 058, 059, 060,
1 {01, 02, 03, 04, 05, 06, 07, 08, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80, 85, 90, 95, 100, 105, 110, 115, 120, 126, 132, 138, 144, 150, 156, 162, 168, 175, 182, 189, 196,
2  01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 036, 037, 038, 039, 040, 041, 042, 043, 044, 045, 046, 047, 048, 049, 050, 051, 052,
3                                              01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 028, 029, 030, 031, 032, 033, 034, 035, 036, 037, 038, 039, 040, 041, 042, 043, 044,
4                                                                                          01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 020, 021, 022, 023, 024, 025, 026, 027, 028, 029, 030, 031, 032, 033, 034, 035, 036,  
                                                                                                                                       01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 012, 013, 014, 015, 016, 017, 018, 019, 020, 021, 022, 023, 024, 025, 026, 027, 028,  
                                                                                                                                                                                   01, 02, 03, 004, 005, 006, 007, 008, 009, 010, 011, 012, 013, 014, 015, 016, 017, 018, 019, 020,
                                                                                                                                                                                                                                       001, 002, 003, 004, 005, 006, 007, 008, 009, 010, 011, 012,
                                                                                                                                                                                                                                                                                                 001, 002, 003, 004,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2024-12-20 17:32:57 | 显示全部楼层
$a(n,k)=\lfloor \frac{\left(n-\frac{k-1}{2}\right)^2}{2 (k-1)}\rfloor$

  1. Table[Floor[(n - (k - 1)/2)^2/(2 (k - 1))], {k, 2, 9}, {n, k, 40}]
复制代码


{{1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,253,276,300,325,351,378,406,435,465,496,528,561,595,630,666,703,741,780},{1,2,4,6,9,12,16,20,25,30,36,42,49,56,64,72,81,90,100,110,121,132,144,156,169,182,196,210,225,240,256,272,289,306,324,342,361,380},{1,2,3,5,7,9,12,15,18,22,26,30,35,40,45,51,57,63,70,77,84,92,100,108,117,126,135,145,155,165,176,187,198,210,222,234,247},{1,2,3,4,6,8,10,12,15,18,21,24,28,32,36,40,45,50,55,60,66,72,78,84,91,98,105,112,120,128,136,144,153,162,171,180},{1,2,3,4,5,7,9,11,13,15,18,21,24,27,30,34,38,42,46,50,55,60,65,70,75,81,87,93,99,105,112,119,126,133,140},{1,2,3,4,5,6,8,10,12,14,16,18,21,24,27,30,33,36,40,44,48,52,56,60,65,70,75,80,85,90,96,102,108,114},{1,2,3,4,5,6,7,9,11,13,15,17,19,21,24,27,30,33,36,39,42,46,50,54,58,62,66,70,75,80,85,90,95},{1,2,3,4,5,6,7,9,10,12,14,16,18,20,22,25,27,30,33,36,39,42,45,49,52,56,60,64,68,72,76,81}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-12-21 06:14:27 | 显示全部楼层
3个相同的数字串。在集合{1, 2, 3, 4, 5, ..., n}, 取其中k个不同数, 满足k个数能组成等差数列(公差>0), 有多少种取法?

Table[Sum[Floor[a/(k - 1)], {a, n - 1}], {k, 2, 9}, {n, k, 40}]
{1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780},
{1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380},
{1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247},
{1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180},
{1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140},
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114},
{1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95},
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80},

Table[((2 n - (k - 1) (1 + Floor[(n - 1)/(k - 1)])) Floor[(n - 1)/(k - 1)])/2, {k, 2, 9}, {n, k, 40}]
{1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780},
{1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380},
{1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247},
{1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180},
{1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140},
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114},
{1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95},
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80},

Table[CoefficientList[Series[x/((1 - x)^2 (x - x^k)), {x, 0, 40 - k}], x], {k, 2, 9}]
{1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780},
{1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, 49, 56, 64, 72, 81, 90, 100, 110, 121, 132, 144, 156, 169, 182, 196, 210, 225, 240, 256, 272, 289, 306, 324, 342, 361, 380},
{1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247},
{1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 128, 136, 144, 153, 162, 171, 180},
{1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140},
{1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 21, 24, 27, 30, 33, 36, 40, 44, 48, 52, 56, 60, 65, 70, 75, 80, 85, 90, 96, 102, 108, 114},
{1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95},
{1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39, 42, 45, 48, 52, 56, 60, 64, 68, 72, 76, 80},
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2024-12-23 06:31:03 | 显示全部楼层
2个梯形(4条边是4个不同整数),周长相同,面积相同,且面积是相同周长中最大的。

周长=30, {上底, 左腰, 右腰, 下底}={6,7,8,9}={5,7,8,10},
周长=70, {上底, 左腰, 右腰, 下底}={15,17,18,20}={14,17,18,21},
周长=126, {上底, 左腰, 右腰, 下底}={28,31,32,35}={27,31,32,36},
周长=198, {上底, 左腰, 右腰, 下底}={45,49,60,54}={44,49,50,55},
周长=286, {上底, 左腰, 右腰, 下底}={66,71,72,77}={65,71,72,78},
周长=390, {上底, 左腰, 右腰, 下底}={91,97,98,104}={90,97,98,105},
周长=510, {上底, 左腰, 右腰, 下底}={120,127,128,135}={119,127,128,136},
周长=646, {上底, 左腰, 右腰, 下底}={153,161,162,170}={152,161,162,171},
周长=798, {上底, 左腰, 右腰, 下底}={190,199,200,209}={189,199,200,210},
周长=966, {上底, 左腰, 右腰, 下底}={231,241,242,252}={230,241,242,253},
周长=1150, {上底, 左腰, 右腰, 下底}={276,287,288,299}={275,287,288,300},
周长=1350, {上底, 左腰, 右腰, 下底}={325,337,338,350}={324,337,338,351},
周长=1566, {上底, 左腰, 右腰, 下底}={378,391,392,405}={377,391,392,406},
周长=1798, {上底, 左腰, 右腰, 下底}={435,449,450,464}={434,449,450,465},
周长=2046, {上底, 左腰, 右腰, 下底}={496,511,512,527}={495,511,512,528},
周长=2310, {上底, 左腰, 右腰, 下底}={561,577,578,594}={560,577,578,595},
......
周长是这样一串数。 OEIS没有这串数。
{30, 70, 126, 198, 286, 390, 510, 646, 798, 966, 1150, 1350, 1566, 1798, 2046, 2310, 2590, 2886, 3198, 3526, 3870, 4230, 4606, 4998, 5406, 5830, 6270, 6726, 7198, 7686, 8190, 8710, 9246, 9798, 10366, 10950, 11550, 12166}

点评

我只会:Table[Solve[{a + b + c + d == n, 0 < a < d, 0 < b, 0 < c, Abs[c - b] < d - a < b + c}, {a, b, c, d}, Integers], {n, 5, 10}]  发表于 6 天前
591#:这些按钮我还是用不了。  发表于 6 天前
相同周长,面积最大的梯形,则最大面积对应的梯形至多是两个。已解决。  发表于 6 天前
相同周长(4条边是4个不同整数),面积最大的梯形,则最大面积对应的梯形至多是两个。  发表于 6 天前
$\left( \begin{array}{ccc} \{13,17,18,20\} & 68 & 198 \sqrt{2} \\ \{14,17,18,19\} & 68 & 198 \sqrt{2} \\ \end{array} \right)$  发表于 6 天前
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-12-31 02:11 , Processed in 0.024419 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表