找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 7 天前 | 显示全部楼层

A029113——仿造1个。 ——Hoang Xuan Thanh, Jul 09 2025。

前n个自然数,有a(n)个5,7倍数的数。
a(0)=1,
a(1)=1,
a(2)=1,
a(3)=1,
a(4)=1,
a(5)=2,
a(6)=2,
a(7)=3,
a(8)=3,
a(9)=3,
a(10)=4,
a(11)=4,
a(12)=4,
a(13)=4,
a(14)=5,
a(15)=6,
a(16)=6,
a(17)=6,
a(18)=6,
a(19)=6,
a(20)=6,
a(21)=7,
a(22)=7,
a(23)=7,
a(24)=7,
a(25)=8,
a(26)=8,
a(27)=8,
a(28)=9,
a(29)=9,
a(30)=10,
a(31)=10,
a(32)=10,
a(33)=10,
a(34)=10,
a(35)=11,
a(36)=11,
a(37)=11,
a(38)=11,
a(39)=11,
a(40)=12,

{1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10,
11, 11, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 19, 19, 20, 20, 20, 20, 20,
21, 21, 21, 21, 21, 22, 22, 23, 23, 23, 24, 24, 24, 24, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 28, 28, 28, 29, 29, 30, 30, 30, 30, 30,
31, 31, 31, 31, 31, 32, 32, 33, 33, 33, 34, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 37, 37, 37, 37, 38, 38, 38, 39, 39, 40, 40, 40, 40, 40}
LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 11}, 140]

点评

a(20)=7  发表于 6 天前
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 6 天前 | 显示全部楼层

  1. t = Table[Count[Range[0, n], _?(Divisible[#, 5] || Divisible[#, 7] &)], {n, 0, 139}]

  2. v = Table[1 + Floor[n/5] + Floor[n/7] - Floor[n/35], {n, 0, 139}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-10-3 08:51 , Processed in 0.024239 second(s), 17 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表