找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 前天 09:44 | 显示全部楼层
A003348——Numbers that are the sum of 3 positive 5th powers.——A344641是同一个数字串。

3, 34, 65, 96, 245, 276, 307, 487, 518, 729, 1026, 1057, 1088, 1268, 1299, 1510, 2049, 2080, 2291, 3072, 3127, 3158, 3189, 3369, 3400, 3611, 4150, 4181, 4392, 5173, 6251, 6282, 6493, 7274, 7778, 7809, 7840, 8020, 8051, 8262, 8801, 8832,

Union[n /. Solve[{a^5 + b^5 + c^5 == n, 354810000 > n > 354000000, a >= b >= c > 0}, {n, a, b, c}, Integers]]——用我们的公式也可以出来前20000项。

{353509243, 353522298, 353524961, 353525699, 353528450, 353708774, 353730794, 353747250, 353798400, 353864576, 353937693, 353987492, 354010368, 354015599, 354017056, 354019995, 354036451, 354111492, 354132448,
354262984, 354295305, 354354750, 354391276, 354405537, 354407732, 354483062, 354542101, 354550285, 354597981, 354661594, 354790877, 354790908, 354791119, 354791900, 354793792, 354794001, 354798652, 354807683}

19963 353509243
19964 353522298
19965 353524961
19966 353525699
19967 353528450
19968 353708774
19969 353730794
19970 353747250
19971 353798400
19972 353864576
19973 353937693
19974 353987492
19975 354010368
19976 354015599
19977 354017056
19978 354019995
19979 354036451
19980 354111492
19981 354132448
19982 354262984
19983 354295305
19984 354354750
19985 354391276
19986 354405537
19987 354407732
19988 354483062
19989 354542101
19990 354550285
19991 354597981
19992 354661594
19993 354790877
19994 354790908
19995 354791119
19996 354791900
19997 354793792
19998 354794001
19999 354798652
20000 354807683
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 昨天 06:44 | 显示全部楼层
A046080——\(\D n^2 = a_{1}^2 + a_{2}^2\)
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 1, 1, 0, 0, 0,

A181786——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2\)
0, 0, 0, 1, 0, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 3, 0, 2, 3, 3, 0, 6, 2, 3, 1, 2, 1, 8, 1, 3, 3, 4, 0, 10, 2, 5, 3, 4, 3, 8, 0, 5, 6, 6, 2, 11, 3, 6, 1, 8, 2, 12, 1, 6, 8, 8, 1, 15, 3, 8, 3, 7, 4, 20, 0, 6, 10, 9, 2, 16, 5, 9, 3, 9, 4, 15, 3, 15, 8, 10, 0, 22, 5, 11, 6, 9, 6, 18,

OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2\)
{0, 1, 0, 1, 1, 2, 2, 1, 2, 5, 3, 2, 5, 8, 9, 1, 7, 10, 9, 5, 16, 12, 13, 2, 19, 18, 22, 8, 20, 32, 23, 1, 35, 25, 42, 10, 32, 31, 51, 5, 38, 55, 42, 12, 80, 43, 50, 2, 63, 62, 83, 18, 63, 75, 91, 8, 103, 65, 77, 32, 83, 74, 144, 1, 127, 116, 99, 25, 151, 133}

A179015——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2\)
0, 0, 0, 1, 1, 1, 2, 5, 2, 6, 6, 9, 9, 15, 8, 25, 20, 21, 25, 39, 26, 46, 44, 57, 49, 71, 52,102, 81, 81, 99, 145,92, 156, 126,164, 160, 204, 151, 247, 217, 236, 245, 326, 211, 357, 319, 381, 360, 416, 344, 518, 446, 476, 450, 670, 468, 675, 607, 661,

OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2\)
{0, 0, 1, 0, 1, 4, 3, 2, 10, 10, 12, 16, 20, 28, 40, 32, 46, 81, 68, 84, 107, 138, 131, 160, 184, 250, 253, 272, 296, 459, 374, 452, 501, 650, 599, 732, 714,981, 901, 1124, 1036, 1405, 1236, 1566, 1558, 1994, 1718, 2086, 1961, 2873, 2324, 3004}

OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2 +a_{7}^2 \)
{0, 0, 0, 1, 2, 1, 4, 7, 9, 13, 19, 29, 35, 46, 68, 87, 101, 138, 159, 212, 261, 308, 348, 505, 488, 633, 756, 905, 936, 1268, 1250, 1647, 1808, 2113, 2078, 3022, 2726, 3508, 3755, 4400, 4320, 5956, 5357, 6984, 7025, 8427, 8015, 11241, 9659}

OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2+a_{7}^2  +a_{8}^2 \)
{0, 0, 0, 1, 1, 1, 5, 9, 9, 15, 30, 32, 61, 70, 93, 149, 202, 198, 338, 421, 486, 608, 845, 942, 1280, 1423, 1719, 2246,  2673, 2838, 3752,  4478, 4869, 5736, 7094, 7912, 9356, 10363, 11844, 14715, 16045, 17316, 20649, 24188, 25767, 29132}

OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2 +a_{7}^2 +a_{8}^2 +a_{9}^2 \)
{0, 0, 1, 0, 1, 4, 3, 5, 16, 19, 27, 52, 63, 95, 155, 182, 260, 389, 479, 626, 880, 1088,1401, 1792, 2265, 2811, 3599, 4275,5386, 6507, 7998,9398, 11620, 13690, 16545, 19027, 23217, 26841, 31677, 36210, 43529, 48992, 58411, 65608, 75993}

可以有统一的通项公式——Count[PowersRepresentations[#^2, 9, 2], w_ /; (Times@@w) > 0] & /@Range[50]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-12-13 02:30 , Processed in 0.027368 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表