A046080——\(\D n^2 = a_{1}^2 + a_{2}^2\)
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 4, 0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 0, 4, 0, 1, 0, 1, 1, 1, 0, 0, 0,
A181786——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2\)
0, 0, 0, 1, 0, 0, 1, 1, 0, 3, 0, 2, 1, 1, 1, 3, 0, 2, 3, 3, 0, 6, 2, 3, 1, 2, 1, 8, 1, 3, 3, 4, 0, 10, 2, 5, 3, 4, 3, 8, 0, 5, 6, 6, 2, 11, 3, 6, 1, 8, 2, 12, 1, 6, 8, 8, 1, 15, 3, 8, 3, 7, 4, 20, 0, 6, 10, 9, 2, 16, 5, 9, 3, 9, 4, 15, 3, 15, 8, 10, 0, 22, 5, 11, 6, 9, 6, 18,
OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2\)
{0, 1, 0, 1, 1, 2, 2, 1, 2, 5, 3, 2, 5, 8, 9, 1, 7, 10, 9, 5, 16, 12, 13, 2, 19, 18, 22, 8, 20, 32, 23, 1, 35, 25, 42, 10, 32, 31, 51, 5, 38, 55, 42, 12, 80, 43, 50, 2, 63, 62, 83, 18, 63, 75, 91, 8, 103, 65, 77, 32, 83, 74, 144, 1, 127, 116, 99, 25, 151, 133}
A179015——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2\)
0, 0, 0, 1, 1, 1, 2, 5, 2, 6, 6, 9, 9, 15, 8, 25, 20, 21, 25, 39, 26, 46, 44, 57, 49, 71, 52,102, 81, 81, 99, 145,92, 156, 126,164, 160, 204, 151, 247, 217, 236, 245, 326, 211, 357, 319, 381, 360, 416, 344, 518, 446, 476, 450, 670, 468, 675, 607, 661,
OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2\)
{0, 0, 1, 0, 1, 4, 3, 2, 10, 10, 12, 16, 20, 28, 40, 32, 46, 81, 68, 84, 107, 138, 131, 160, 184, 250, 253, 272, 296, 459, 374, 452, 501, 650, 599, 732, 714,981, 901, 1124, 1036, 1405, 1236, 1566, 1558, 1994, 1718, 2086, 1961, 2873, 2324, 3004}
OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2 +a_{7}^2 \)
{0, 0, 0, 1, 2, 1, 4, 7, 9, 13, 19, 29, 35, 46, 68, 87, 101, 138, 159, 212, 261, 308, 348, 505, 488, 633, 756, 905, 936, 1268, 1250, 1647, 1808, 2113, 2078, 3022, 2726, 3508, 3755, 4400, 4320, 5956, 5357, 6984, 7025, 8427, 8015, 11241, 9659}
OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2+a_{7}^2 +a_{8}^2 \)
{0, 0, 0, 1, 1, 1, 5, 9, 9, 15, 30, 32, 61, 70, 93, 149, 202, 198, 338, 421, 486, 608, 845, 942, 1280, 1423, 1719, 2246, 2673, 2838, 3752, 4478, 4869, 5736, 7094, 7912, 9356, 10363, 11844, 14715, 16045, 17316, 20649, 24188, 25767, 29132}
OEIS没有——\(\D n^2 = a_{1}^2 + a_{2}^2 +a_{3}^2 +a_{4}^2 +a_{5}^2 +a_{6}^2 +a_{7}^2 +a_{8}^2 +a_{9}^2 \)
{0, 0, 1, 0, 1, 4, 3, 5, 16, 19, 27, 52, 63, 95, 155, 182, 260, 389, 479, 626, 880, 1088,1401, 1792, 2265, 2811, 3599, 4275,5386, 6507, 7998,9398, 11620, 13690, 16545, 19027, 23217, 26841, 31677, 36210, 43529, 48992, 58411, 65608, 75993}
可以有统一的通项公式——Count[PowersRepresentations[#^2, 9, 2], w_ /; (Times@@w) > 0] & /@Range[50] |