- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
发表于 2018-12-26 20:55:17
|
显示全部楼层
对于一般情况是否存在三个等圆的内切圆?答案待定,但有以下结论:
对于一般情况,若要求有两个圆半径相等,记\(PD=x,PE=y,PF=z,P(x0,y0)\),若EF平行于底边则(另外两种情形即DE或DF平行于对应的侧边未列出)
\(4a(a^3+a^2b+a^2c-5ab^2+10abc-5ac^2+3b^3-3b^2c-3bc^2+3c^3)x0^2+(-4a^5-4a^4b-4a^4c+24a^3b^2-40a^3bc+16a^3c^2-16a^2b^3+40a^2b^2c-16a^2bc^2-8a^2c^3-4ab^4+8ab^3c-8abc^3+4ac^4+4b^5-4b^4c-8b^3c^2+8b^2c^3+4bc^4-4c^5)x0+a(a+b+c)(a^2+2ab-2ac-3b^2+2bc+c^2)(-b+c+a)^2=0\)
\((2a^3+2a^2b+2a^2c-10ab^2+20abc-10ac^2+6b^3-6b^2c-6bc^2+6c^3)x^2-(2(a-b-c))(a^3+a^2b+a^2c-7ab^2+14abc-7ac^2+b^3-b^2c-bc^2+c^3)x+a(a-b-c)(a^3+a^2b+a^2c-5ab^2+10abc-5ac^2+3b^3-3b^2c-3bc^2+3c^3)=0\)
\(c^7+3ba^6+b^7+a^5b^2-5a^4b^3-5a^3b^4+a^2b^5-3a^5c^2+3a^4c^3+3a^3c^4-3a^2c^5-3b^5c^2+3b^4c^3+3b^3c^4-3b^2c^5-a^6c-ac^6-b^6c-bc^6+(4a^5+12a^4b+12a^4c-8a^3b^2+64a^3bc-8a^3c^2-24a^2b^3+40a^2b^2c+40a^2bc^2-24a^2c^3+4ab^4-8ab^2c^2+4ac^4+12b^5+12b^4c-24b^3c^2-24b^2c^3+12bc^4+12c^5)y^2+(8a^4b^2-16a^4bc+8a^4c^2+16a^3b^3-32a^3b^2c+16a^3bc^2-16a^2b^3c+16a^2b^2c^2+16a^2bc^3-16a^2c^4-16ab^5+32ab^3c^2-16abc^4-8b^6+24b^4c^2-24b^2c^4+8c^6)y+a^7+3ab^6-2a^5bc-7a^4bc^2+4a^3b^3c+2a^2b^2c^3-2ab^5c+4a^3bc^3+5ab^2c^4-2abc^5+4ab^3c^3-7ab^4c^2+a^4b^2c-6a^2b^3c^2+5a^2bc^4-6a^3b^2c^2+a^2b^4c=0\)
\(c^7-ba^6+b^7-3a^5b^2+3a^4b^3+3a^3b^4-3a^2b^5+a^5c^2-5a^4c^3-5a^3c^4+a^2c^5-3b^5c^2+3b^4c^3+3b^3c^4-3b^2c^5+3a^6c+3ac^6-b^6c-bc^6+(4a^5+12a^4b+12a^4c-8a^3b^2+64a^3bc-8a^3c^2-24a^2b^3+40a^2b^2c+40a^2bc^2-24a^2c^3+4ab^4-8ab^2c^2+4ac^4+12b^5+12b^4c-24b^3c^2-24b^2c^3+12bc^4+12c^5)z^2+(8a^4b^2-16a^4bc+8a^4c^2+16a^3b^2c-32a^3bc^2+16a^3c^3-16a^2b^4+16a^2b^3c+16a^2b^2c^2-16a^2bc^3-16ab^4c+32ab^2c^3-16ac^5+8b^6-24b^4c^2+24b^2c^4-8c^6)z+a^7-ab^6-2a^5bc+a^4bc^2+4a^3b^3c-6a^2b^2c^3-2ab^5c+4a^3bc^3-7ab^2c^4-2abc^5+4ab^3c^3+5ab^4c^2-7a^4b^2c+2a^2b^3c^2+a^2bc^4-6a^3b^2c^2+5a^2b^4c=0\)
\(20bc^9a^2-8b^5c^5a^2+c^{12}-40bc^7a^4+4bca^{10}+20b^9ca^2-6b^{10}a^2-44b^4a^6c^2-20a^8b^3c+26a^8b^2c^2-20a^8bc^3+(4a^9b+4a^9c+4a^8b^2+8a^8bc+4a^8c^2-32a^7b^3+16a^7b^2c+16a^7bc^2-32a^7c^3+16a^6b^4-80a^6b^3c+64a^6b^2c^2-80a^6bc^3+16a^6c^4+40a^5b^5-8a^5b^4c-32a^5b^3c^2-32a^5b^2c^3-8a^5bc^4+40a^5c^5-40a^4b^6+128a^4b^5c-216a^4b^4c^2+256a^4b^3c^3-216a^4b^2c^4+128a^4bc^5-40a^4c^6-48a^3b^6c+144a^3b^5c^2-96a^3b^4c^3-96a^3b^3c^4+144a^3b^2c^5-48a^3bc^6+16a^2b^8-48a^2b^7c+32a^2b^6c^2+48a^2b^5c^3-96a^2b^4c^4+48a^2b^3c^5+32a^2b^2c^6-48a^2bc^7+16a^2c^8-12ab^9+36ab^8c-96ab^6c^3+72ab^5c^4+72ab^4c^5-96ab^3c^6+36abc^8-12ac^9+4b^10-8b^9c-12b^8c^2+32b^7c^3+8b^6c^4-48b^5c^5+8b^4c^6+32b^3c^7-12b^2c^8-8bc^9+4c^10)y0^2-24b^3c^5a^4+15c^8a^4+28b^6c^6-8b^5c^7-17b^4c^8+12b^3c^9-16b^7c^3a^2+26b^4c^4a^4+48b^3a^6c^3+40b^5a^6c+20b^6c^4a^2+36b^6c^2a^4+2b^2c^{10}-4bc^{11}-24b^5c^3a^4+40ba^6c^5-20b^6a^6-20c^6a^6-4b^{11}c+2b^{10}c^2+12b^9c^3-17b^8c^4-8b^7c^5+15a^8b^4+15a^8c^4+15b^8a^4-6c^{10}a^2+b^{12}+36b^2c^6a^4-14b^2c^8a^2-16b^3c^7a^2-6b^2a^{10}-40b^7ca^4+(4a^8+8a^7b+8a^7c-36a^6b^2+88a^6bc-36a^6c^2-16a^5b^3+16a^5b^2c+16a^5bc^2-16a^5c^3+124a^4b^4-400a^4b^3c+552a^4b^2c^2-400a^4bc^3+124a^4c^4-120a^3b^5+360a^3b^4c-240a^3b^3c^2-240a^3b^2c^3+360a^3bc^4-120a^3c^5+36a^2b^6-72a^2b^5c-36a^2b^4c^2+144a^2b^3c^3-36a^2b^2c^4-72a^2bc^5+36a^2c^6)y0^4+a^{12}-44b^2a^6c^4-6c^2a^{10}+20b^4c^6a^2-14b^8c^2a^2=0\)
例取\({a=7,b=8,c=9}\)
得到
\({a = 7, b = 8, c = 9, s = 12\sqrt{5}, x = 2.818895425, x0 = 4.248875272, y = 1.954723856, y0 = 2.671209728, z = 2.606298475}\)
画图得到
|
|