找回密码
 欢迎注册
楼主: 到处瞎逛

[讨论] 华中科技大学概率统计系副主任王湘君算对了吗?

[复制链接]
发表于 2009-8-1 15:13:38 | 显示全部楼层
根据7#,对于指定k个连续位置被选中的情况的概率为${(1138-k)!*514!}/{(514-k)!*1138!}$ 而k个连续位置总共有1138-k+1个,所以我们得出$C(k)={(1138-k+1)!*514!}/{(514-k)!*1138!}$ 但是这个计算中,所有连续k+1个位置被选中的情况被重复计算了2次,连续k+2个位置被选中的被重复计算了3次,.... 为了扣除这个重复计算,我们计算k+1个连续位置被选中的情况,得到概率C(k+1)正好计算所有连续k+1个位置被选中的情况1次,k+2个连续位置被选中的情况重复计算了2次,... 两者相减正好所有的都只计算一次,而这个理论值为0.00833 不过这里计算过程还没有考虑出现两段以上长度不小k的连续选中的重复计算(当然这个情况概率很小,可以忽略) 所以我们看出,实际上概率大概在0.83%,小于1%了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-1 15:15:03 | 显示全部楼层
请问mathe 如何将你编写的程序放在MATLAB 7.0里面运行,由于我很想看一下(包括你以前编的一些程序)计算结果... 多谢!!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-1 15:18:01 | 显示全部楼层
我基本用c/c++,matlab可不行
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-1 16:00:33 | 显示全部楼层
7#
但是这里没有考虑部分重复计算,所以结果有点偏大
你上面的解应该是正确的啊,结果更近于1.5%,不知道哪里有重复计算,能请mathe解释一下吗?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-1 16:21:15 | 显示全部楼层
本帖最后由 bolizhou 于 2009-8-1 17:34 编辑 11#,刚刚看到这个说明,mathe好仔细
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-5 09:08:38 | 显示全部楼层
根据7#,对于指定k个连续位置被选中的情况的概率为${(1138-k)!*514!}/{(514-k)!*1138!}$ 而k个连续位置总共有1138-k+1个,所以我们得出$C(k)={(1138-k+1)!*514!}/{(514-k)!*1138!}$ 但是这个计算中,所有连续k+1个位置 ...实际上概率大概在0.83%,小于1%了 mathe 发表于 2009-8-1 15:13
按此推导,一些重复计算没去掉,实际上概率小于0.8331%(当然小于1%了),但实际上概率大于多少呢?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-5 09:57:21 | 显示全部楼层
其它的重复部分相对比较小,可以忽略了. 计算机模拟结果在0.81%左右
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-5 16:54:41 | 显示全部楼层
本帖最后由 nnd 于 2009-8-5 18:15 编辑 将问题简化为:从并列的1138个“0”中随机地将其中的514个数改为“1”,出现连续的14个“1”的概率是多少? 定义一个函数: Px(m,n) (其中m>n>14,13*m>14*n) 为从m个并列的“0”中随机地将其中n个数改为“1”,没有出现连续的14个将问题简化为:从并列的1138个“0”中随机地将其中的514个数改为“1”,出现连续的14个“1”的概率。 则从m+1个“0”中改写n个“1”时,有两种情况: 1.第一个数没有被改写为“1”,这种情况的概率为:(m+1-n)/(m+1) 此时,从后面的m个并列的“0”中随机地将n个数改为“1”,没有出现连续的14个“1”的概率为Px(m,n)。 2.第一个数被改写为“1”,概率为:n/(m+1) 此时,第一个数后面没有出现14个连续的“1”的概率为:Px(m,n-1)。 所以,从m+1个并列的“0”中随机地将n个数改为“1”,没有出现连续的14个“1”的概率为: Px(m+1,n)=(m+1-n)/(m+1)*Px(m,n)+n/(m+1)*Px(m,n-1)-x 等式1 其中,x为第1~14位数被改写成“1”,但是第15个数仍旧为“0”的概率。这种情况出现了连续的14个“1”。它被计算在第二种情况中了,应该减去。 x=(n!/(n-14)!)/((m+1)!/(m+1-14)!) * ((m+1-n)/(m+1-14) 等式2 所以,从m+1个并列的“0”中随机地将其中n个数改为“1”,没有出现连续的14个“1”的概率。 Px(m+1,n)=(m+1-n)/(m+1)*Px(m,n)+n/(m+1)*Px(m,n-1)-(n!/(n-14)!)/((m+1)!/(m+1-14)!) * ((m+1-n)/(m+1-14) 1-Px(1138,518)就是答案了。但是解这个很麻烦。 用软件模拟(不是计算)就简单了,见 http://blog.sina.com.cn/nuotuo
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-5 17:00:22 | 显示全部楼层
18# nnd 35866779975855627770117347904495176761791001484650469598138130073870143831688361 56584730766484298427515513168896219162550064601579259997703715359679662473280298 95315722377612083865370775742102073205902284782814572346298366395183114719878772 97713544279219711024757827512402697126835938977122062524680855571529838461627533 70221484111450000/C(514,1138)=0.008302608418
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2009-8-5 17:07:02 | 显示全部楼层
s(n,k)=0,k<14 or n<14 or n
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-24 02:28 , Processed in 0.029191 second(s), 14 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表