- 注册时间
- 2009-3-10
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 2345
- 在线时间
- 小时
|
发表于 2021-10-11 22:13:29
|
显示全部楼层
本帖最后由 dlsh 于 2021-10-11 22:15 编辑
如图:ABC是等腰三角形,DB:DC=FA:FC,求证:△AFC相似CDB
- 假设e^iA = v
- \!\(\*OverscriptBox["b", "_"]\) = b = 0;
- \!\(\*OverscriptBox["c", "_"]\) = c = 1;
- Fendian[a_, b_, u_] := (a - b u)/(1 - u);
- \!\(\*OverscriptBox["Fendian", "_"]\)[a_, b_, u_] := (
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox[
- RowBox[{" ", "b", " "}], "_"]\)
- \!\(\*OverscriptBox["u", "_"]\))/(1 -
- \!\(\*OverscriptBox["u", "_"]\));(*向量定比分点公式,
- \!\(\*OverscriptBox["Fendian", "_"]\)[a_,b_,u_]:=(
- \!\(\*OverscriptBox["a", "_"]\)-
- \!\(\*OverscriptBox[
- RowBox[{" ", "b", " "}], "_"]\))/(u-1);!!*)
- (*g=Fendian[c,b,v];
- \!\(\*OverscriptBox["g", "_"]\)=
- \!\(\*OverscriptBox["Fendian", "_"]\)[c,b,v];*)
- a = 1/(1 - v);
- \!\(\*OverscriptBox["a", "_"]\) = -(v/(1 - v));
- (*d=Fendian[a,b,\[Lambda]];
- \!\(\*OverscriptBox["d", "_"]\)=
- \!\(\*OverscriptBox["Fendian", "_"]\)[a,b,\[Lambda]];*)
- d = \[Lambda] a;
- \!\(\*OverscriptBox["d", "_"]\) = \[Lambda]
- \!\(\*OverscriptBox["a", "_"]\);
- u = d/(d - c);
- \!\(\*OverscriptBox["u", "_"]\) =
- \!\(\*OverscriptBox["d", "_"]\)/(
- \!\(\*OverscriptBox["d", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\));
- u1 = d/(d - c) w;
- \!\(\*OverscriptBox["u1", "_"]\) =
- \!\(\*OverscriptBox["d", "_"]\)/((
- \!\(\*OverscriptBox["d", "_"]\) -
- \!\(\*OverscriptBox["c", "_"]\)) w);
- e = Fendian[c, a, u];
- \!\(\*OverscriptBox["e", "_"]\) =
- \!\(\*OverscriptBox["Fendian", "_"]\)[c, a, u];
- e1 = Fendian[c, a, u1];
- \!\(\*OverscriptBox["e1", "_"]\) =
- \!\(\*OverscriptBox["Fendian", "_"]\)[c, a, u1];
- Simplify[{d,
- \!\(\*OverscriptBox["d", "_"]\), , e,
- \!\(\*OverscriptBox["e", "_"]\), e -
- \!\(\*OverscriptBox["e", "_"]\), e +
- \!\(\*OverscriptBox["e", "_"]\)}]
- Factor[e1 -
- \!\(\*OverscriptBox["e1", "_"]\)]
- Solve[e1 -
- \!\(\*OverscriptBox["e1", "_"]\) == 0, w](*AE:CE=CD:BD=w*)
复制代码
满足条件的点有两个,一个是要证明的结论,另外一个也很有意义,楼主的结论只是特例。 |
|