约定 3/n=1/A+1/B 有 n 种分拆方式。
a(01)=0:
a(02)=1: 1/1+1/02,
a(03)=1: 1/2+1/02,
a(04)=1: 1/2+1/04,
a(05)=1: 1/2+1/10,
a(06)=2: 1/3+1/06, 1/4+1/04,
a(07)=0:
a(08)=2: 1/3+1/24, 1/4+1/08,
a(09)=2: 1/4+1/12, 1/6+1/06,
a(10)=2: 1/4+1/20, 1/5+1/10,
a(11)=1: 1/4+1/44,
a(12)=3: 1/5+1/20, 1/6+1/12, 1/8+1/8,
{0, 1, 1, 1, 1, 2, 0, 2, 2, 2, 1, 3, 0, 3, 2, 2, 1, 5, 0, 4, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 0, 3, 2, 2, 3, 8,
0, 3, 2, 5, 1, 5, 0, 4, 5, 2, 1, 5, 0, 4, 2, 3, 1, 8, 2, 6, 2, 2, 1, 8, 0, 3, 5, 3, 3, 5, 0, 4, 2, 6, 1, 11,
0, 3, 3, 3, 3, 5, 0, 7, 4, 2, 1, 8, 2, 3, 2, 5, 1,14,0, 4, 2, 2, 3, 6, 0, 5, 5, 6, 1, 5, 0, 6, 5, 2, 1, 13}
粗看: n=1,7, 13, 19, 25, 31, 37, 43, 49, 55, 61, ..... 即 6k+1, 3/n=1/A+1/B 无解
细看: n= 25, 55, 85, 115, 121, 145, 175, 187, 205, 235, ...... 3/n=1/A+1/B 还是有解的
为节约篇幅,我们把 6k+1 特别地拉出来:
0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2,
0, 0, 2, 0, 2, 0, 0, 0, 1, 2, 0, 0, 0, 2, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 6, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 0, 0, 3,
0, 0, 2, 0, 2, 0, 2, 0, 1, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 6, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 2, 0, 0, 2, 0, 2, 0, 0, 6,
0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 2, 0, 0, 2, 6, 0, 0, 0, 0, 2, 1, 3, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 3, 0, 0, 2, 0, 2,
对上面的数字串,我们把不是 0 的又特别地拉出来:
5, 10, 15, 20, 21, 25, 30, 32, 35, 40, 43, 45, 49, 50, 54, 55, 60, 65, 66, 70, 75, 76, 80, 83, 85, 87, 89, 90, 95, 98,
100, 105, 109, 110, 112, 115, 117, 120, 125, 130, 131, 134, 135, 140, 141, 142, 145, 150, 151, 153, 155, 158, 160,
164, 165, 168, 170, 175, 180, 181, 185, 186, 190, 195, 197, 199, 200, 202, 204, 205, 208, 210, 215, 219, 220, 225,
227, 228, 230, 235, 236, 240, 241, 245, 250, 252, 253, 255, 257, 260, 263, 265, 270, 273, 274, 275, 280, 281, 285,
286, 287, 290, 295, 296, 300, 304, 305, 307, 310, 315, 318, 319, 320, 321, 322, 325, 329, 330, 335, 338, 340, 342,
344, 345, 350, 351, 355, 360, 362, 363, 365, 369, 370, 372, 373, 375, 380, 384, 385, 388, 389, 390, 395, 400, ......
A199860 是这串数,可通项公式没这么好。
Select[Range[568], MemberQ[Mod[Take[Divisors[6 # - 5], {1, -1}], 6], 5] &] |