A^k=n位数, A^k各个数位上最大数码和=a(n)。随着k增大, a(n)<a(n-1)还是有的。
- Table[Max@Table[Total@IntegerDigits[A^k], {A, Floor[Power[10^(n - 1), (k)^-1]], Power[10^n - 1, (k)^-1]}], {k, 1, 9}, {n, 24 + 2k}]
复制代码
{9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 198, 207, 216, 225, 234}
{9, 13, 19, 31, 40, 46, 54, 63, 70, 81, 88, 097, 106, 112, 121, 130, 136, 148, 154, 162, 171, 180, 187, 193, 205, 211, 220, 229}
{8, 10, 18, 28, 28, 44, 46, 54, 63, 73, 80, 082, 098, 100, 109, 118, 125, 136, 144, 154, 154, 163, 172, 181, 190}
{1, 09, 13, 19, 25, 37, 43, 52, 55, 70, 76, 079, 085, 099, 103, 108, 118, 127, 135, 142, 144, 153, 171, 171, 178, 181, 189, 198, 205, 211, 220, 232}
{1, 05, 09, 27, 27, 36, 45, 46, 52, 63, 72, 080, 089, 090, 099, 104, 108, 119, 126, 143, 137, 152, 157, 162, 175, 180, 182, 189, 198, 208, 209, 216, 225, 234}
{1, 10, 18, 19, 27, 28, 45, 37, 46, 64, 64, 081, 082, 082, 091, 100, 100, 118, 117, 126, 136, 136, 154, 154, 163, 163, 172, 181, 181, 190, 199, 208, 217, 226, 235, 235}
{1, 01, 11, 18, 23, 36, 45, 40, 55, 58, 62, 063, 072, 081, 090, 097, 107, 115, 121, 126, 128, 144, 148, 145, 154, 162, 180, 176, 200, 189, 200, 198, 207, 217, 224, 242, 241, 243}
{1, 01, 13, 18, 25, 25, 36, 37, 54, 58, 61, 064, 076, 073, 076, 090, 099, 109, 108, 118, 133, 133, 136, 142, 162, 162, 171, 162, 175, 180, 181, 193, 198, 208, 225, 226, 229, 235, 235, 247}
{1, 01, 08, 08, 27, 27, 26, 36, 45, 53, 64, 073, 081, 081, 082, 098, 099, 091, 118, 118, 116, 118, 135, 145, 154, 161, 163, 163, 170, 181, 189, 189, 207, 198, 216, 224, 226, 226, 234, 253, 244, 260}
......
k=2是最困难的一个(k=1虽然困难,但有规律)。后面的好像容易找一些。譬如:
{1, 01, 08, 08, 27, 27, 26, 36, 45, 53, 64, 073, 081, 081, 082, 098, 099, 091, 118, 118, 116, 118, 135, 145, 154, 161, 163, 163, 170, 181, 189, 189, 207, 198, 216, 224, 226, 226, 234, 253,
244, 260, 262, 271, 271, 289, 280, 296, 307, 306, 316, 315, 333, 333, 343, 351, 369, 369, 378, 378, 378, 379, 395, 397, 413, 415, 424, 424, 432, 433, 442, 459} |