- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19887
- 在线时间
- 小时
|
楼主 |
发表于 2024-3-25 10:22:43
|
显示全部楼层
关于8#网友Huxley 的推导过程中省略的部分做一点计算和说明:
\( \cos(d\phi)\)=\(\frac{r\*r+r\*r'd\theta}{\sqrt{r\*r*(r\*r+2r\*r'd\theta+(r'\*r')(d\theta)^2}}=\frac{1+xd(\theta)}{\sqrt{(1+xd(\theta))^2+(y-x^2)d(\theta)^2}}\)
其中\(x=\frac{r\*r'}{r\*r}\),\(y=\frac{r'\*r'}{r\*r}\),\(A=\sqrt{y-x^2}\)
\(d\phi=\arccos( \frac{1}{\sqrt{1+(\frac{Ad(\theta)}{1+xd(\theta)})^2}})d(\theta) \)
对右边关于\(\theta\)渐近展开得到:
\(d\phi=Ad\theta+Axd(\theta)^2+\frac{1}{3}A(-3x^2+A^2)(d(\theta))^3-xA(-x^2+A^2)(d(\theta))^4+....\)
取第一项得到:
\(d\phi=Ad\theta=\sqrt{y-x^2}d(\theta)=\sqrt{\frac{r'\*r'}{r\*r}-(\frac{r\*r'}{r\*r})^2}d(\theta)\)
对于网友Jack315 15#的计算结果:
\(\theta=\int_0^t(\sqrt{\frac{a^2\sin(t)^2+b^2\cos(t)^2}{a^2\cos(t)^2+b^2\sin(t)^2+c^2}-(\frac{(b^2-a^2)\sin(t)*\cos(t)}{a^2\cos(t)^2+b^2\sin(t)^2+c^2})^2}\dif t\)
可以利用级数展开得到:
\(\theta=\frac{b}{\sqrt{a^2+c^2}}\int_0^t(1+A_1t^2+A_2t^4+A_3t^6+...)\dif t\)
其中
\(A_1=\frac{(2b^2 + c^2)(a - b)(a + b)t^2}{2*(a^2 + c^2)*b^2}\)
\(A_2=\frac{(a + b)(a - b)(16a^2b^4 + 8a^2b^2c^2 - 3a^2c^4 - 24b^6 - 20b^4c^2 - b^2c^4)}{24(a^2 + c^2)^2b^4}\)
\(A_3=\frac{(a + b)(a - b)(272a^4b^6 + 136a^4b^4c^2 - 30a^4b^2c^4 + 45a^4c^6 - 960a^2b^8 - 896a^2b^6c^2 - 88a^2b^4c^4 - 30a^2b^2c^6 + 720b^10 + 840b^8c^2 + 182b^6c^4 + b^4c^6)}{720(a^2 + c^2)^3b^6}\)
对于{a=3,b=2,c=5}
\(F_1(t)=\frac{b}{\sqrt{a^2+c^2}}\int_0^t(1+A_1t^2+A_2t^4+A_3t^6+...)\dif t=\sqrt(\frac{2}{17})(t+\frac{165}{3*272}t^3-\frac{32345}{5*147968}t^5+\frac{3380957}{7*40247296}t^7+...)\)
\(F_2(t)=\int_0^t(\sqrt{\frac{9\cos(t)^2+4\sin(t)^2}{9\cos(t)^2+4\sin(t)^2+25}-(\frac{25\sin(t)\cos(t)}{9\cos(t)^2+4\sin(t)^2+25})^2}\dif t\)
取20个样本点\(t=\frac{\pi}{2}*\frac{k}{20},k=1..20\)
得到:
\([F_1(t),F_2(t)]=[0.02697249116, 0.02697249116], [0.05414525431, 0.05414525413], [0.08171331124, 0.08171330529], [0.1098615660, 0.1098614892], [0.1387607016, 0.1387601509], [0.1685642254, 0.1685615051], [0.1994070420, 0.1993966715], [0.2314059407, 0.2313732537], [0.2646623758, 0.2645733101], [0.2992679249, 0.2990515907], [0.3353128063, 0.3348339855], [0.3728978377, 0.3719162088], [0.4121502213, 0.4102628287], [0.4532435323, 0.4498068149], [0.4964223004, 0.4904498159], [0.5420315594, 0.5320633799], [0.5905517542, 0.5744912936], [0.6426393807, 0.6175531354], [0.6991737474, 0.6610490316], [0.7613102389, 0.7047654702]\)
显然,当\(t<1\)时结果还不错,但大于1时,偏差有点大,需要进一步改进 |
|