- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19887
- 在线时间
- 小时
|
楼主 |
发表于 2024-3-28 09:40:55
|
显示全部楼层
对于
\(F_1(t)=\int_0^t(\sqrt{\frac{a^2\sin(t)^2+b^2\cos(t)^2}{a^2\cos(t)^2+b^2\sin(t)^2+c^2}-(\frac{(b^2-a^2)\sin(t)*\cos(t)}{a^2\cos(t)^2+b^2\sin(t)^2+c^2})^2}\dif t\)
做第一步代换:
m1 = -1/2*a^2*c^2 + 1/2*b^2*c^2,
n1 = a^2*b^2 + a^2*c^2/2 + b^2*c^2/2,
m2 = a^2/2 - b^2/2,
n2 = b^2/2 + c^2 + a^2/2
可以将原积分式化简为:
\(\frac{\sqrt{m1*\cos(2*t)+n1}}{m2*\cos(2*t)+n2}\)
然后积分得到:
\(a0=\sqrt{n1-m1}m2(m2-n2)=\frac{a(b^2+c^2)^{3/2}(a^2-b^2)}{2}\)
\(a1=m1n2-m2n1=-\frac{(b^2+c^2)(a^2+c^2)(a^2-b^2)}{2}\)
\(a2=m1(m2-n2)=\frac{c^2(a^2-b^2)(b^2+c^2)}{2}\)
\(x=\cos(t)\)
\(b1=\frac{2m2}{m2-n2}=\frac{(b^2-a^2)(b^2+c^2)}{2}\)
\(c1=\sqrt{\frac{2m1}{m1-n1}}=\frac{c}{a}\frac{\sqrt{a^2-b^2}}{b^2+c^2}\)
最终得到:
\(F1(t)=\frac{a1(EllipticPi(x,b1,c1)-EllipticPi(b1,c1))+a2(EllipticPi(x,c1)-EllipticK(x,c1))}{a0}\)
例如:
\(a = 3, b = 2, c = 5, m1 = -125/2, m2 = 5/2, n1 = 397/2, n2 = 63/2,a0 = (435*sqrt(29))/2, a1 = -2465, a2 = 3625/2, b1 = -5/29, c1 = (5*sqrt(145))/87, x = cos(t)\)
代入得到:
F2(t)=-2.104547165*EllipticPi(cos(t), -0.1724137931, 0.6920456655) + 1.547461151*EllipticF(cos(t), 0.6920456655) + 0.7047654707
数值计算:\(t =\frac{\Pi}{2}\frac{k}{20},k=1..20\)
[F1,F2]=[0.02697249116, 0.0269724907], [0.05414525413, 0.0541452537], [0.08171330529, 0.0817133067], [0.1098614892, 0.1098614897], [0.1387601509, 0.1387601517], [0.1685615051, 0.1685615067], [0.1993966715, 0.1993966737], [0.2313732537, 0.2313732547], [0.2645733101, 0.2645733107], [0.2990515907, 0.2990515917], [0.3348339855, 0.3348339867], [0.3719162088, 0.3719162097], [0.4102628287, 0.4102628296], [0.4498068149, 0.4498068155], [0.4904498159, 0.4904498166], [0.5320633799, 0.5320633804], [0.5744912936, 0.5744912942], [0.6175531354, 0.6175531360], [0.6610490316, 0.6610490321], [0.7047654702, 0.7047654707]
级数展开:
F2( x)=-(a1*EllipticPi(b1, c1) + EllipticK(c1)*a2)/a0 + (a1 + a2)*x/a0 + (a1*(c1^2/6 + b1/3 + 1/6) + (c1^2/6 + 1/6)*a2)*x^3/a0 + (a1*(3/40*c1^4 + 1/10*b1*c1^2 + 1/5*b1^2 + 1/20*c1^2 + 1/10*b1 + 3/40) + (3/40*c1^4 + 1/20*c1^2 + 3/40)*a2)*x^5/a0 + (a1*(5/112*c1^6 + 3/56*b1*c1^4 + 1/14*b1^2*c1^2 + 3/112*c1^4 + 1/7*b1^3 + 1/28*b1*c1^2 + 1/14*b1^2 + 3/112*c1^2 + 3/56*b1 + 5/112) + (5/112*c1^6 + 3/112*c1^4 + 3/112*c1^2 + 5/112)*a2)*x^7/a0 + (a1*(35/1152*c1^8 + 5/144*b1*c1^6 + 1/24*b1^2*c1^4 + 5/288*c1^6 + 1/18*b1^3*c1^2 + 1/48*b1*c1^4 + 1/9*b1^4 + 1/36*b1^2*c1^2 + 1/64*c1^4 + 1/18*b1^3 + 1/48*b1*c1^2 + 1/24*b1^2 + 5/288*c1^2 + 5/144*b1 + 35/1152) + (35/1152*c1^8 + 5/288*c1^6 + 1/64*c1^4 + 5/288*c1^2 + 35/1152)*a2)*x^9/a0 + (a1*(63/2816*c1^10 + 35/1408*b1*c1^8 + 5/176*b1^2*c1^6 + 35/2816*c1^8 + 3/88*b1^3*c1^4 + 5/352*b1*c1^6 + 1/22*b1^4*c1^2 + 3/176*b1^2*c1^4 + 15/1408*c1^6 + 1/11*b1^5 + 1/44*b1^3*c1^2 + 9/704*b1*c1^4 + 1/22*b1^4 + 3/176*b1^2*c1^2 + 15/1408*c1^4 + 3/88*b1^3 + 5/352*b1*c1^2 + 5/176*b1^2 + 35/2816*c1^2 + 35/1408*b1 + 63/2816) + (63/2816*c1^10 + 35/2816*c1^8 + 15/1408*c1^6 + 15/1408*c1^4 + 35/2816*c1^2 + 63/2816)*a2)*x^11/a0 + (a1*(9/832*b1^2*c1^4 + 5/416*b1^2*c1^6 + 3/208*b1^3*c1^2 + 1/26*b1^5*c1^2 + 5/208*b1^3*c1^6 + 5/416*b1^2*c1^2 + 35/3328*b1*c1^2 + 1/52*b1^4*c1^2 + 3/104*b1^4*c1^4 + 15/1664*b1*c1^6 + 15/1664*b1*c1^4 + 105/13312*c1^8 + 25/3328*c1^6 + 63/3328*b1*c1^10 + 35/3328*b1*c1^8 + 3/208*b1^3*c1^4 + 63/6656*c1^10 + 35/1664*b1^2*c1^8 + 105/13312*c1^4 + 63/6656*c1^2 + 1/26*b1^5 + 35/1664*b1^2 + 5/208*b1^3 + 1/13*b1^6 + 3/104*b1^4 + 63/3328*b1 + 231/13312*c1^12 + 231/13312) + (231/13312*c1^12 + 63/6656*c1^10 + 105/13312*c1^8 + 25/3328*c1^6 + 105/13312*c1^4 + 63/6656*c1^2 + 231/13312)*a2)*x^13/a0 + (a1*(35/6144*c1^8 + 35/6144*c1^6 + 1/128*b1^2*c1^4 + 7/1024*b1*c1^8 + 1/128*b1^2*c1^6 + 1/96*b1^3*c1^2 + 3/320*b1^3*c1^4 + 143/10240*c1^14 + 63/10240*c1^4 + 21/1280*b1^2 + 7/384*b1^3 + 1/48*b1^4 + 5/768*b1*c1^6 + 1/96*b1^3*c1^6 + 7/768*b1^2*c1^8 + 1/15*b1^7 + 1/40*b1^5 + 77/10240*c1^12 + 77/5120*b1 + 143/10240 + 1/30*b1^6 + 7/384*b1^3*c1^8 + 21/2560*b1*c1^10 + 1/30*b1^6*c1^2 + 21/2560*b1*c1^2 + 1/60*b1^5*c1^2 + 21/1280*b1^2*c1^10 + 7/768*b1^2*c1^2 + 63/10240*c1^10 + 1/80*b1^4*c1^4 + 7/1024*b1*c1^4 + 1/48*b1^4*c1^6 + 77/5120*b1*c1^12 + 1/40*b1^5*c1^4 + 1/80*b1^4*c1^2 + 77/10240*c1^2) + (143/10240*c1^14 + 77/10240*c1^12 + 63/10240*c1^10 + 35/6144*c1^8 + 35/6144*c1^6 + 63/10240*c1^4 + 77/10240*c1^2 + 143/10240)*a2)*x^15/a0
代入上面的相关参数,得到
[F1,F2]=[0.02697249116, 0.07122775680], [0.05414525413, 0.08127508887], [0.08171330529, 0.09721574295], [0.1098614892, 0.1180523822], [0.1387601509, 0.1427261684], [0.1685615051, 0.1703034082], [0.1993966715, 0.2000823349], [0.2313732537, 0.2316116508], [0.2645733101, 0.2646452166], [0.2990515907, 0.2990699796], [0.3348339855, 0.3348378550], [0.3719162088, 0.3719168525], [0.4102628287, 0.4102629092], [0.4498068149, 0.4498068222], [0.4904498159, 0.4904498166], [0.5320633799, 0.5320633806], [0.5744912936, 0.5744912943], [0.6175531354, 0.6175531358], [0.6610490316, 0.6610490323], [0.7047654702, 0.7047654708]
这个级数展开在t较小时,误差很大,对于基本的椭圆积分,应该有相关渐近展开公式,有谁可以提供一下??
@wayne
\(EllipticPi(z,v,k)=\int_0^z\frac{1}{(1-vt^2)\sqrt{(1-t^2)(1-k^2t^2)}}\dif t\)
\(EllipticPi(1,v,k)=EllipticPi(v,k)\)
\(EllipticF(z,k)=\int_0^z\frac{1}{\sqrt{(1-t^2)(1-k^2t^2)}}\dif t\)
\(EllipticF(1,k)=EllipticK(k)\)
以下内容为微信公众号:数学的情怀提供
|
|