- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19886
- 在线时间
- 小时
|
发表于 2024-5-22 20:16:23
|
显示全部楼层
现在我们来计算有关两个内接三角形的外心间距\(d\)
对于三角形\(ABC\)内两点\(P,Q\),若三角形三边长分别为\(a,b,c\),\(PA=x,PB=y,PC=z,QA=x1,QB=y1,QC=z1,PQ=d\),则有下列关系式:
-a^4*d^4 + 2*a^4*d^2*x^2 + 2*a^4*d^2*x1^2 - a^4*x^4 + 2*a^4*x^2*x1^2 - a^4*x1^4 + 4*a^2*b^2*c^2*d^2 + 2*a^2*b^2*d^4 - 2*a^2*b^2*d^2*x^2 - 2*a^2*b^2*d^2*x1^2 - 2*a^2*b^2*d^2*y^2 - 2*a^2*b^2*d^2*y1^2 + 2*a^2*b^2*x^2*y^2 - 2*a^2*b^2*x^2*y1^2 - 2*a^2*b^2*x1^2*y^2 + 2*a^2*b^2*x1^2*y1^2 + 2*a^2*c^2*d^4 - 2*a^2*c^2*d^2*x^2 - 2*a^2*c^2*d^2*x1^2 - 2*a^2*c^2*d^2*z^2 - 2*a^2*c^2*d^2*z1^2 + 2*a^2*c^2*x^2*z^2 - 2*a^2*c^2*x^2*z1^2 - 2*a^2*c^2*x1^2*z^2 + 2*a^2*c^2*x1^2*z1^2 + 4*a^2*d^2*x^2*x1^2 - 2*a^2*d^2*x^2*y1^2 - 2*a^2*d^2*x^2*z1^2 - 2*a^2*d^2*x1^2*y^2 - 2*a^2*d^2*x1^2*z^2 + 2*a^2*d^2*y^2*z1^2 + 2*a^2*d^2*y1^2*z^2 + 2*a^2*x^4*y1^2 + 2*a^2*x^4*z1^2 - 2*a^2*x^2*x1^2*y^2 - 2*a^2*x^2*x1^2*y1^2 - 2*a^2*x^2*x1^2*z^2 - 2*a^2*x^2*x1^2*z1^2 - 2*a^2*x^2*y^2*z1^2 - 2*a^2*x^2*y1^2*z^2 + 4*a^2*x^2*y1^2*z1^2 + 2*a^2*x1^4*y^2 + 2*a^2*x1^4*z^2 + 4*a^2*x1^2*y^2*z^2 - 2*a^2*x1^2*y^2*z1^2 - 2*a^2*x1^2*y1^2*z^2 - b^4*d^4 + 2*b^4*d^2*y^2 + 2*b^4*d^2*y1^2 - b^4*y^4 + 2*b^4*y^2*y1^2 - b^4*y1^4 + 2*b^2*c^2*d^4 - 2*b^2*c^2*d^2*y^2 - 2*b^2*c^2*d^2*y1^2 - 2*b^2*c^2*d^2*z^2 - 2*b^2*c^2*d^2*z1^2 + 2*b^2*c^2*y^2*z^2 - 2*b^2*c^2*y^2*z1^2 - 2*b^2*c^2*y1^2*z^2 + 2*b^2*c^2*y1^2*z1^2 - 2*b^2*d^2*x^2*y1^2 + 2*b^2*d^2*x^2*z1^2 - 2*b^2*d^2*x1^2*y^2 + 2*b^2*d^2*x1^2*z^2 + 4*b^2*d^2*y^2*y1^2 - 2*b^2*d^2*y^2*z1^2 - 2*b^2*d^2*y1^2*z^2 - 2*b^2*x^2*y^2*y1^2 - 2*b^2*x^2*y^2*z1^2 + 2*b^2*x^2*y1^4 + 4*b^2*x^2*y1^2*z^2 - 2*b^2*x^2*y1^2*z1^2 + 2*b^2*x1^2*y^4 - 2*b^2*x1^2*y^2*y1^2 - 2*b^2*x1^2*y^2*z^2 + 4*b^2*x1^2*y^2*z1^2 - 2*b^2*x1^2*y1^2*z^2 + 2*b^2*y^4*z1^2 - 2*b^2*y^2*y1^2*z^2 - 2*b^2*y^2*y1^2*z1^2 + 2*b^2*y1^4*z^2 - c^4*d^4 + 2*c^4*d^2*z^2 + 2*c^4*d^2*z1^2 - c^4*z^4 + 2*c^4*z^2*z1^2 - c^4*z1^4 + 2*c^2*d^2*x^2*y1^2 - 2*c^2*d^2*x^2*z1^2 + 2*c^2*d^2*x1^2*y^2 - 2*c^2*d^2*x1^2*z^2 - 2*c^2*d^2*y^2*z1^2 - 2*c^2*d^2*y1^2*z^2 + 4*c^2*d^2*z^2*z1^2 + 4*c^2*x^2*y^2*z1^2 - 2*c^2*x^2*y1^2*z^2 - 2*c^2*x^2*y1^2*z1^2 - 2*c^2*x^2*z^2*z1^2 + 2*c^2*x^2*z1^4 - 2*c^2*x1^2*y^2*z^2 - 2*c^2*x1^2*y^2*z1^2 + 4*c^2*x1^2*y1^2*z^2 + 2*c^2*x1^2*z^4 - 2*c^2*x1^2*z^2*z1^2 - 2*c^2*y^2*z^2*z1^2 + 2*c^2*y^2*z1^4 + 2*c^2*y1^2*z^4 - 2*c^2*y1^2*z^2*z1^2 - x^4*y1^4 + 2*x^4*y1^2*z1^2 - x^4*z1^4 + 2*x^2*x1^2*y^2*y1^2 - 2*x^2*x1^2*y^2*z1^2 - 2*x^2*x1^2*y1^2*z^2 + 2*x^2*x1^2*z^2*z1^2 - 2*x^2*y^2*y1^2*z1^2 + 2*x^2*y^2*z1^4 + 2*x^2*y1^4*z^2 - 2*x^2*y1^2*z^2*z1^2 - x1^4*y^4 + 2*x1^4*y^2*z^2 - x1^4*z^4 + 2*x1^2*y^4*z1^2 - 2*x1^2*y^2*y1^2*z^2 - 2*x1^2*y^2*z^2*z1^2 + 2*x1^2*y1^2*z^4 - y^4*z1^4 + 2*y^2*y1^2*z^2*z1^2 - y1^4*z^4=0
对于两个内接三角形的外心及楼上的相关计算结果有:
\(x=R,y=R,z=R\)
代入化简得到:
\(a^4d^2 - a^4x_1^2 - a^2b^2c^2 - 2a^2b^2d^2 + a^2b^2x_1^2 + a^2b^2y_1^2 - 2a^2c^2d^2 + a^2c^2x_1^2 + a^2c^2z_1^2 + b^4d^2 - b^4y_1^2 - 2b^2c^2d^2 + b^2c^2y_1^2 + b^2c^2z_1^2 + c^4d^2 - c^4z_1^2=0\)
且
\(x_1=\sqrt{x_0^2-(\frac{a_1}{2})^2}+\sqrt{R_1^2-(\frac{a_1}{2})^2}\)
\(y_1=\sqrt{x_0^2-(\frac{b_1}{2})^2}+\sqrt{R_1^2-(\frac{b_1}{2})^2}\)
\(z_1=\sqrt{x_0^2-(\frac{c_1}{2})^2}+\sqrt{R_1^2-(\frac{c_1}{2})^2}\)
转化为代数方程有:
\(R_1^4 - 2R_1^2x_0^2 - 2R_1^2x_1^2 + a_1^2x_1^2 + x_0^4 - 2x_0^2x_1^2 + x_1^4=0\)
\(R_1^4 - 2R_1^2x_0^2 - 2R_1^2y_1^2 + b_1^2y_1^2 + x_0^4 - 2x_0^2y_1^2 + y_1^4=0\)
\(R_1^4 - 2R_1^2x_0^2 - 2R_1^2z_1^2 + c_1^2z_1^2 + x_0^4 - 2x_0^2z_1^2 + z_1^4=0\)
特别的,若\(x=R=R_1\) 则有
\(a_1=a,b_1=b,c_1=c\)
代入上面三个代数方程有:
\(x_1=\sqrt{4R^2-a^2},y_1=\sqrt{4R^2-b^2},z_1=\sqrt{4R^2-c^2}\)
进一步代入关于\(d\)的代数方程中化简得到:
\(a^6 - a^4b^2 - a^4c^2 - a^2b^4 + 3a^2b^2c^2 - a^2c^4 + b^6 - b^4c^2 - b^2c^4 + c^6 + d^2(a + b + c)(a - b - c)(a - b + c)(a + b - c)=0\)
例如(下面数值解)
\(R = 5.59017, R_1 = 5.59017, a = 10, a_1 = 10, b = 10, b_1 = 10, c = 8.94427, c_1 = 8.94427, d = 1.11803, x_0 = 5.59017\)
|
|