找回密码
 欢迎注册
楼主: mathe

[擂台] 立方数最小和问题

[复制链接]
 楼主| 发表于 2008-5-5 10:54:48 | 显示全部楼层
发现前面的计算也错了,如果不限制正负号的比例,结果应该是8303139055857536. 前面的附件我已更新
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-5 11:58:18 | 显示全部楼层
能否通过线性规化 通过部分解得到全部解 比如80个分4组 最后把4组结果拟合?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-5 15:12:43 | 显示全部楼层
总结果太多了,保存这些结果都是问题
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-5 17:44:06 | 显示全部楼层
假设得到的结果组成个 4X2^20的矩阵 有方法对矩阵进行某种变换 以把有价值的数字凑到一行么?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-7 20:57:32 | 显示全部楼层
原帖由 mathe 于 2008-5-3 21:28 发表

2008是8的倍数,根据我前面的构着方法,知道r=2的方法是存在的。也就是$r_{"max"}>=2$
同样我们可以计算出$2008!$中2的幂为$k=[2008/2]+[2008/4]+[2008/8]+[2008/16]+...$,那么$r=k-1$的方案是存在的,也就是$r_{ ... $


在很早很早之前,我就得到了“前16及前24个正整数”均可3次等幂和划分,
所以,前 $N=2008$ 个正整数可 $r$ 次等幂和划分的最大 $r_max >= 3$

其中,“前24个正整数3次等幂和划分”是由“前12个正整数2次等幂和划分”推演出来的,而后者是划分方式是唯一的。
这几天我编写了个程序,居然又得到一组非常特别的数据——“前40个正整数可4次等幂和划分”,且划分形式也是唯一的!

我曾猜想:“连续 $2^{r+1}$ 个整数可 $r$ 次等幂和划分;且划分形式是唯一的”。
存在性容易证明,唯一性未证明。

也就是说,连续 N 个整数可等幂和划分的次数不低于将 N 用二进制表达时末尾连续“0”的个数-1;
而“前12个正整数可2次等幂和划分”,则可将次数在上述结论上可添一(如 $N$ 可表达成 $4xx(2s+3t)$ 时,$r >= 2$);
而“前40个正整数可4次等幂和划分”,则可将次数在上述结论上可再添一(如 $N$ 可表达成 $8xx(4s+5t)$ 时,$r >= 4$);

所以,前 $N=2008$ 个正整数可 $r$ 次等幂和划分的最大 $r_max >= 4$,
因为:$2008 = 8 xx ( 4 xx 4 + 5 xx 47 )$,
这样我们将可等幂和划分次数就从 2 提高到了 4

是否还有更奇异的结论?
(要得到它,需要对现有程序进行改造,且需要大量的机时去运行。。。)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-7 22:10:10 | 显示全部楼层
太玄妙啊
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2008-5-8 09:56:45 | 显示全部楼层
注意:我对 35# 中的定义进行了修改,并新加了一个美妙定理。 欢迎大家继续探讨:如何提高可等幂和划分次数问题。。。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-9 17:47:17 | 显示全部楼层
通过计算机穷举长度不超过32的所有数据,可以得到
在N<=32中,2次等幂划分很多,有6057组,其中
N=7,N=8,N=11,N=12都只有1组解。
而3次等幂划分总共23组,如下:
Len 15, Max Order 3:-1-2+3-4+5+6-7-8+9+10-11+12-13-14+15
Len 16, Max Order 3:+1-2-3+4-5+6+7-8-9+10+11-12+13-14-15+16
Len 23, Max Order 3:+1-2-3-4-5+6-7+8-9+10+11+12+13-14+15-16+17-18-19-20-21+22+23
Len 23, Max Order 3:-1+2-3+4-5-6-7-8+9+10+11+12+13+14-15-16-17-18+19-20+21-22+23
Len 23, Max Order 3:-1+2-3-4+5-6+7-8-9+10+11+12+13-14-15+16-17+18-19-20+21-22+23
Len 23, Max Order 3:-1+2-3-4-5+6+7+8-9+10-11-12+13-14+15+16+17-18-19-20+21-22+23
Len 23, Max Order 3:-1-2+3+4-5-6+7-8+9-10+11+12-13+14-15+16-17-18+19+20-21-22+23
Len 23, Max Order 3:+1+2-3+4-5+6-7-8+9-10-11+12+13+14+15-16-17-18+19+20-21-22+23
Len 23, Max Order 3:+1+2-3-4+5+6+7-8-9-10-11+12+13-14+15+16-17+18-19+20-21-22+23
Len 23, Max Order 3:-1-2-3+4+5+6+7-8+9-10-11-12-13+14-15+16+17+18+19-20-21-22+23
Len 24, Max Order 3:+1+2-3-4-5-6+7-8+9-10+11+12+13+14-15+16-17+18-19-20-21-22+23+24
Len 24, Max Order 3:-1-2-3-4+5+6+7-8-9+10-11-12+13+14+15+16+17-18-19-20-21-22+23+24
Len 24, Max Order 3:+1-2+3-4+5-6-7-8-9+10+11+12+13+14+15-16-17-18-19+20-21+22-23+24
Len 24, Max Order 3:-1-2-3-4+5+6-7+8-9+10+11-12+13-14+15-16+17-18+19-20-21+22-23+24
Len 24, Max Order 3:+1-2+3-4-5+6-7+8-9-10+11+12+13+14-15-16+17-18+19-20-21+22-23+24
Len 24, Max Order 3:+1-2+3-4-5-6+7+8+9-10+11-12-13+14-15+16+17+18-19-20-21+22-23+24
Len 24, Max Order 3:-1-2-3-4+5-6+7+8+9+10-11-12+13-14-15+16+17-18-19+20+21-22-23+24
Len 24, Max Order 3:+1-2-3+4+5-6-7+8-9+10-11+12+13-14+15-16+17-18-19+20+21-22-23+24
Len 24, Max Order 3:-1+2+3-4+5-6+7-8-9+10-11-12+13+14+15+16-17-18-19+20+21-22-23+24
Len 24, Max Order 3:-1+2+3-4-5+6+7+8-9-10-11-12+13+14-15+16+17-18+19-20+21-22-23+24
Len 24, Max Order 3:+1+2+3+4-5-6+7+8-9-10-11-12-13+14+15+16+17+18-19-20+21-22-23+24
Len 24, Max Order 3:+1-2-3-4+5+6+7+8-9+10-11-12-13-14+15-16+17+18+19+20-21-22-23+24
Len 24, Max Order 3:+1+2+3+4-5+6-7-8-9-10+11+12+13-14-15-16+17+18+19+20-21-22-23+24
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-9 17:54:02 | 显示全部楼层
需要说明的是没有找到4次等幂划分,也就是说长度为31和32的4次等幂划分不存在
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2008-5-9 17:56:03 | 显示全部楼层
上面错了,还没有搜索n=31和32
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-21 20:53 , Processed in 0.025367 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表