找回密码
 欢迎注册
楼主: 数学星空

[转载] 折纸重叠面积问题

[复制链接]
发表于 2014-1-3 23:26:07 | 显示全部楼层
感觉 可以 当做一道很好的 online judge 的编程题  
input:
三边长a,b,c.
output:  
最大的重叠面积比例...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-1-4 01:10:03 | 显示全部楼层
总结一下以上的结论:
1.如果一个三角形中存在两条边a,b,使得$1<=a/b<=sqrt(2)$,那么利用两边夹角对角线作为折痕,重叠面积占总面积比例为$1/2>=k_1=b/{a+b}>=sqrt(2)-1$
2.若对于三角形三边为a,b,c,$a>b>c$而且$a/b>sqrt(2),b/c>sqrt(2)$,做出一条垂直a边的折痕$DE$[设交$BC$边于点$D$,
   则[$BD=(a^4-a^2*b^2+a^2*c^2-b^4+2*b^2*c^2-c^4)/(a*(2*a^2+b^2-c^2))$,$CD=(a^2+b^2-c^2)^2/(a*(2*a^2+b^2-c^2))$],
   让重叠面积最大, 可以证明这个重叠面积比例为$k_2=a^2/(2*a^2+b^2-c^2)={tan(B)+tan(C)}/{3tan(B)+tan(C)}>sqrt(2)-1$
3.对于11#,hujunhua提出的计算方案:
   设两个三角形互截所得线段与三角形的边长成比例$2*mu$,且折痕$DE$长为$2*r $则有
    $r^3-mu^2*r*(a^2+b^2+c^2)-2*mu^3*a*b*c=0$
    面积重叠率$K={4*mu*(a*sqrt(r^2-mu^2*a^2)+b*sqrt(r^2-mu^2*b^2)+c*sqrt(r^2-mu^2*c^2))}/sqrt(2*a^2*b^2+2*a^2*c^2+2*b^2*c^2-a^4-b^4-c^4)$
   即需要求K的最大值$k_3$(确定$mu$,$r$的值,也就确定了折痕$DE$的位置)

至于说最大的面积重叠率就是:$max{k_1,k_3}$或者$max{k_2,k_3}$
   
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-1-4 02:01:53 | 显示全部楼层
很奇怪:
对于楼上$k_3$计算(即hujunhua方案)
我们进一步计算:
$r^3-mu^2*r*(a^2+b^2+c^2)-2*mu^3*a*b*c=0$ (1)
$k^2*(-a^4+2*a^2*b^2+2*a^2*c^2-b^4+2*b^2*c^2-c^4)-(16*(-a^4+2*a^2*b^2+2*a^2*c^2-b^4+2*b^2*c^2-c^4))*mu^4-128*a*b*c*r*mu^3-(16*(2*a^2*r^2+2*b^2*r^2+2*c^2*r^2))*mu^2+16*r^4=0$   (2)
利用(1)与(2)消元$r$得到
-65536*a^8*b^4*mu^12+131072*a^8*b^2*c^2*mu^12-65536*a^8*c^4*mu^12+131072*a^6*b^6*mu^12-131072*a^6*b^4*c^2*mu^12-131072*a^6*b^2*c^4*mu^12+131072*a^6*c^6*mu^12-65536*a^4*b^8*mu^12-131072*a^4*b^6*c^2*mu^12+393216*a^4*b^4*c^4*mu^12-131072*a^4*b^2*c^6*mu^12-65536*a^4*c^8*mu^12+131072*a^2*b^8*c^2*mu^12-131072*a^2*b^6*c^4*mu^12-131072*a^2*b^4*c^6*mu^12+131072*a^2*b^2*c^8*mu^12-65536*b^8*c^4*mu^12+131072*b^6*c^6*mu^12-65536*b^4*c^8*mu^12-2048*a^10*b^2*k^2*mu^8-2048*a^10*c^2*k^2*mu^8+12288*a^8*b^4*k^2*mu^8+4096*a^8*b^2*c^2*k^2*mu^8+12288*a^8*c^4*k^2*mu^8-20480*a^6*b^6*k^2*mu^8-10240*a^6*b^4*c^2*k^2*mu^8-10240*a^6*b^2*c^4*k^2*mu^8-20480*a^6*c^6*k^2*mu^8+12288*a^4*b^8*k^2*mu^8-10240*a^4*b^6*c^2*k^2*mu^8+49152*a^4*b^4*c^4*k^2*mu^8-10240*a^4*b^2*c^6*k^2*mu^8+12288*a^4*c^8*k^2*mu^8-2048*a^2*b^10*k^2*mu^8+4096*a^2*b^8*c^2*k^2*mu^8-10240*a^2*b^6*c^4*k^2*mu^8-10240*a^2*b^4*c^6*k^2*mu^8+4096*a^2*b^2*c^8*k^2*mu^8-2048*a^2*c^10*k^2*mu^8-2048*b^10*c^2*k^2*mu^8+12288*b^8*c^4*k^2*mu^8-20480*b^6*c^6*k^2*mu^8+12288*b^4*c^8*k^2*mu^8-2048*b^2*c^10*k^2*mu^8-16*a^12*k^4*mu^4+224*a^10*b^2*k^4*mu^4+224*a^10*c^2*k^4*mu^4-752*a^8*b^4*k^4*mu^4-1184*a^8*b^2*c^2*k^4*mu^4-752*a^8*c^4*k^4*mu^4+1088*a^6*b^6*k^4*mu^4+960*a^6*b^4*c^2*k^4*mu^4+960*a^6*b^2*c^4*k^4*mu^4+1088*a^6*c^6*k^4*mu^4-752*a^4*b^8*k^4*mu^4+960*a^4*b^6*c^2*k^4*mu^4+1632*a^4*b^4*c^4*k^4*mu^4+960*a^4*b^2*c^6*k^4*mu^4-752*a^4*c^8*k^4*mu^4+224*a^2*b^10*k^4*mu^4-1184*a^2*b^8*c^2*k^4*mu^4+960*a^2*b^6*c^4*k^4*mu^4+960*a^2*b^4*c^6*k^4*mu^4-1184*a^2*b^2*c^8*k^4*mu^4+224*a^2*c^10*k^4*mu^4-16*b^12*k^4*mu^4+224*b^10*c^2*k^4*mu^4-752*b^8*c^4*k^4*mu^4+1088*b^6*c^6*k^4*mu^4-752*b^4*c^8*k^4*mu^4+224*b^2*c^10*k^4*mu^4-16*c^12*k^4*mu^4+a^12*k^6-6*a^10*b^2*k^6-6*a^10*c^2*k^6+15*a^8*b^4*k^6+18*a^8*b^2*c^2*k^6+15*a^8*c^4*k^6-20*a^6*b^6*k^6-12*a^6*b^4*c^2*k^6-12*a^6*b^2*c^4*k^6-20*a^6*c^6*k^6+15*a^4*b^8*k^6-12*a^4*b^6*c^2*k^6-6*a^4*b^4*c^4*k^6-12*a^4*b^2*c^6*k^6+15*a^4*c^8*k^6-6*a^2*b^10*k^6+18*a^2*b^8*c^2*k^6-12*a^2*b^6*c^4*k^6-12*a^2*b^4*c^6*k^6+18*a^2*b^2*c^8*k^6-6*a^2*c^10*k^6+b^12*k^6-6*b^10*c^2*k^6+15*b^8*c^4*k^6-20*b^6*c^6*k^6+15*b^4*c^8*k^6-6*b^2*c^10*k^6+c^12*k^6=0            (3)

然后(3)对$mu$求导得到:
-786432*a^8*b^4*mu^11+1572864*a^8*b^2*c^2*mu^11-786432*a^8*c^4*mu^11+1572864*a^6*b^6*mu^11-1572864*a^6*b^4*c^2*mu^11-1572864*a^6*b^2*c^4*mu^11+1572864*a^6*c^6*mu^11-786432*a^4*b^8*mu^11-1572864*a^4*b^6*c^2*mu^11+4718592*a^4*b^4*c^4*mu^11-1572864*a^4*b^2*c^6*mu^11-786432*a^4*c^8*mu^11+1572864*a^2*b^8*c^2*mu^11-1572864*a^2*b^6*c^4*mu^11-1572864*a^2*b^4*c^6*mu^11+1572864*a^2*b^2*c^8*mu^11-786432*b^8*c^4*mu^11+1572864*b^6*c^6*mu^11-786432*b^4*c^8*mu^11-16384*a^10*b^2*k^2*mu^7-16384*a^10*c^2*k^2*mu^7+98304*a^8*b^4*k^2*mu^7+32768*a^8*b^2*c^2*k^2*mu^7+98304*a^8*c^4*k^2*mu^7-163840*a^6*b^6*k^2*mu^7-81920*a^6*b^4*c^2*k^2*mu^7-81920*a^6*b^2*c^4*k^2*mu^7-163840*a^6*c^6*k^2*mu^7+98304*a^4*b^8*k^2*mu^7-81920*a^4*b^6*c^2*k^2*mu^7+393216*a^4*b^4*c^4*k^2*mu^7-81920*a^4*b^2*c^6*k^2*mu^7+98304*a^4*c^8*k^2*mu^7-16384*a^2*b^10*k^2*mu^7+32768*a^2*b^8*c^2*k^2*mu^7-81920*a^2*b^6*c^4*k^2*mu^7-81920*a^2*b^4*c^6*k^2*mu^7+32768*a^2*b^2*c^8*k^2*mu^7-16384*a^2*c^10*k^2*mu^7-16384*b^10*c^2*k^2*mu^7+98304*b^8*c^4*k^2*mu^7-163840*b^6*c^6*k^2*mu^7+98304*b^4*c^8*k^2*mu^7-16384*b^2*c^10*k^2*mu^7-64*a^12*k^4*mu^3+896*a^10*b^2*k^4*mu^3+896*a^10*c^2*k^4*mu^3-3008*a^8*b^4*k^4*mu^3-4736*a^8*b^2*c^2*k^4*mu^3-3008*a^8*c^4*k^4*mu^3+4352*a^6*b^6*k^4*mu^3+3840*a^6*b^4*c^2*k^4*mu^3+3840*a^6*b^2*c^4*k^4*mu^3+4352*a^6*c^6*k^4*mu^3-3008*a^4*b^8*k^4*mu^3+3840*a^4*b^6*c^2*k^4*mu^3+6528*a^4*b^4*c^4*k^4*mu^3+3840*a^4*b^2*c^6*k^4*mu^3-3008*a^4*c^8*k^4*mu^3+896*a^2*b^10*k^4*mu^3-4736*a^2*b^8*c^2*k^4*mu^3+3840*a^2*b^6*c^4*k^4*mu^3+3840*a^2*b^4*c^6*k^4*mu^3-4736*a^2*b^2*c^8*k^4*mu^3+896*a^2*c^10*k^4*mu^3-64*b^12*k^4*mu^3+896*b^10*c^2*k^4*mu^3-3008*b^8*c^4*k^4*mu^3+4352*b^6*c^6*k^4*mu^3-3008*b^4*c^8*k^4*mu^3+896*b^2*c^10*k^4*mu^3-64*c^12*k^4*mu^3=0     (4)

最后(3)与(4)消元$mu$,得到
$a*b*c*k*(a^6+3*a^4*b^2+3*a^4*c^2+3*a^2*b^4-21*a^2*b^2*c^2+3*a^2*c^4+b^6+3*b^4*c^2+3*b^2*c^4+c^6)*(-c+a+b)*(-b+c+a)*(a+b+c)*(a-b-c)=0$
这说明了什么呢?

是否说明折痕为圆直径时,不能求得最大的面积重叠率$k_3$?

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-1-4 08:49:17 | 显示全部楼层
wayne 发表于 2014-1-3 23:26
感觉 可以 当做一道很好的 online judge 的编程题  
input:
三边长a,b,c.

数值计算可以先制定折线方向,只允许平移之。此时,根据折线和边的相交情况,还要分成两种,对于每种情况,容易得出,重叠部分面积是参数的二次函数,容易写出最大面积的关于方向的公式。只是公式中必然还包含一些判断条件,不如两种情况会选择哪一种,对于每种,最大面积是在二次函数最值取到还是边界条件(对应过三角形顶点)取到。对于数值计算,我觉得枚举折线方向通常应该已经可以得到不错的结果。当然如果在得到前面最大面积关于方向的函数后,再能够分析出它的极值情况会更好。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-1-4 10:47:16 | 显示全部楼层
用Geogebra做了一个动画.
可以更改对称轴的位置, 更改三角形的形状, 实时计算重叠面积比例.

http://www.geogebratube.org/student/m67234

点评

可以的,稍等  发表于 2014-1-4 13:48
能否输入三角形三边长a,b,c,(可以固定一边在 X轴上,且一个点在原点),及直线的斜率,与底边的交点位置D(可设定比系数BD/CD);然后算出[A列表示三角形ABC的面积,B列表示重叠面积,C列表示面积比值]  发表于 2014-1-4 11:09
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2014-1-4 12:27:40 | 显示全部楼层
前面已找到两个条件:
$r^3-mu^2*r*(a^2+b^2+c^2)-2*mu^3*a*b*c=0 $         (1)
$k^2*(-a^4+2*a^2*b^2+2*a^2*c^2-b^4+2*b^2*c^2-c^4)-(16*(-a^4+2*a^2*b^2+2*a^2*c^2-b^4+2*b^2*c^2-c^4))*mu^4-128*a*b*c*r*mu^3-(16*(2*a^2*r^2+2*b^2*r^2+2*c^2*r^2))*mu^2+16*r^4=0$        (2)


终于找到了第三个约束方程:(即底边各线段长相加为$a,R$为三角形ABC的外接圆半径)
$4*mu*R*(sqrt(1-({2*mu^2*b^2}/r^2-1)^2)+sqrt(1-({2*mu^2*c^2}/r^2-1)^2))+2*mu*a=a$  (3)
对(3)消元后:
$4096*b^12*c^4*mu^12-8192*b^8*c^8*mu^12+4096*b^4*c^12*mu^12-8192*b^10*c^4*mu^10*r^2+8192*b^8*c^6*mu^10*r^2+8192*b^6*c^8*mu^10*r^2-8192*b^4*c^10*mu^10*r^2-512*a^4*b^6*c^2*mu^8*r^4-512*a^4*b^2*c^6*mu^8*r^4+$
$1024*a^2*b^8*c^2*mu^8*r^4+1024*a^2*b^6*c^4*mu^8*r^4+1024*a^2*b^4*c^6*mu^8*r^4+1024*a^2*b^2*c^8*mu^8*r^4-512*b^10*c^2*mu^8*r^4+5120*b^8*c^4*mu^8*r^4-9216*b^6*c^6*mu^8*r^4+5120*b^4*c^8*mu^8*r^4-$
$512*b^2*c^10*mu^8*r^4+512*a^4*b^6*c^2*mu^7*r^4+512*a^4*b^2*c^6*mu^7*r^4-1024*a^2*b^8*c^2*mu^7*r^4-1024*a^2*b^6*c^4*mu^7*r^4-1024*a^2*b^4*c^6*mu^7*r^4-1024*a^2*b^2*c^8*mu^7*r^4+512*b^10*c^2*mu^7*r^4-$
$1024*b^8*c^4*mu^7*r^4+1024*b^6*c^6*mu^7*r^4-1024*b^4*c^8*mu^7*r^4+512*b^2*c^10*mu^7*r^4-128*a^4*b^6*c^2*mu^6*r^4+512*a^4*b^4*c^2*mu^6*r^6-128*a^4*b^2*c^6*mu^6*r^4+512*a^4*b^2*c^4*mu^6*r^6+$
$256*a^2*b^8*c^2*mu^6*r^4+256*a^2*b^6*c^4*mu^6*r^4-1024*a^2*b^6*c^2*mu^6*r^6+256*a^2*b^4*c^6*mu^6*r^4-2048*a^2*b^4*c^4*mu^6*r^6+256*a^2*b^2*c^8*mu^6*r^4-1024*a^2*b^2*c^6*mu^6*r^6-128*b^10*c^2*mu^6*r^4+$
$256*b^8*c^4*mu^6*r^4+512*b^8*c^2*mu^6*r^6-256*b^6*c^6*mu^6*r^4-512*b^6*c^4*mu^6*r^6+256*b^4*c^8*mu^6*r^4-512*b^4*c^6*mu^6*r^6-128*b^2*c^10*mu^6*r^4+512*b^2*c^8*mu^6*r^6-512*a^4*b^4*c^2*mu^5*r^6-$
$512*a^4*b^2*c^4*mu^5*r^6+1024*a^2*b^6*c^2*mu^5*r^6+2048*a^2*b^4*c^4*mu^5*r^6+1024*a^2*b^2*c^6*mu^5*r^6-512*b^8*c^2*mu^5*r^6+512*b^6*c^4*mu^5*r^6+512*b^4*c^6*mu^5*r^6-512*b^2*c^8*mu^5*r^6+$
$16*a^8*mu^4*r^8-64*a^6*b^2*mu^4*r^8-64*a^6*c^2*mu^4*r^8+128*a^4*b^4*c^2*mu^4*r^6+96*a^4*b^4*mu^4*r^8+128*a^4*b^2*c^4*mu^4*r^6+64*a^4*b^2*c^2*mu^4*r^8+96*a^4*c^4*mu^4*r^8-256*a^2*b^6*c^2*mu^4*r^6-$
$64*a^2*b^6*mu^4*r^8-512*a^2*b^4*c^4*mu^4*r^6+64*a^2*b^4*c^2*mu^4*r^8-256*a^2*b^2*c^6*mu^4*r^6+64*a^2*b^2*c^4*mu^4*r^8-64*a^2*c^6*mu^4*r^8+128*b^8*c^2*mu^4*r^6+16*b^8*mu^4*r^8-128*b^6*c^4*mu^4*r^6-$
$64*b^6*c^2*mu^4*r^8-128*b^4*c^6*mu^4*r^6+96*b^4*c^4*mu^4*r^8+128*b^2*c^8*mu^4*r^6-64*b^2*c^6*mu^4*r^8+16*c^8*mu^4*r^8-32*a^8*mu^3*r^8+128*a^6*b^2*mu^3*r^8+128*a^6*c^2*mu^3*r^8-192*a^4*b^4*mu^3*r^8-$
$128*a^4*b^2*c^2*mu^3*r^8-192*a^4*c^4*mu^3*r^8+128*a^2*b^6*mu^3*r^8-128*a^2*b^4*c^2*mu^3*r^8-128*a^2*b^2*c^4*mu^3*r^8+128*a^2*c^6*mu^3*r^8-32*b^8*mu^3*r^8+128*b^6*c^2*mu^3*r^8-192*b^4*c^4*mu^3*r^8+$
$128*b^2*c^6*mu^3*r^8-32*c^8*mu^3*r^8+24*a^8*mu^2*r^8-96*a^6*b^2*mu^2*r^8-96*a^6*c^2*mu^2*r^8+144*a^4*b^4*mu^2*r^8+96*a^4*b^2*c^2*mu^2*r^8+144*a^4*c^4*mu^2*r^8-96*a^2*b^6*mu^2*r^8+$
$96*a^2*b^4*c^2*mu^2*r^8+96*a^2*b^2*c^4*mu^2*r^8-96*a^2*c^6*mu^2*r^8+24*b^8*mu^2*r^8-96*b^6*c^2*mu^2*r^8+144*b^4*c^4*mu^2*r^8-96*b^2*c^6*mu^2*r^8+24*c^8*mu^2*r^8-8*a^8*mu*r^8+$
$32*a^6*b^2*mu*r^8+32*a^6*c^2*mu*r^8-48*a^4*b^4*mu*r^8-32*a^4*b^2*c^2*mu*r^8-48*a^4*c^4*mu*r^8+32*a^2*b^6*mu*r^8-32*a^2*b^4*c^2*mu*r^8-32*a^2*b^2*c^4*mu*r^8+32*a^2*c^6*mu*r^8-8*b^8*mu*r^8+$
$32*b^6*c^2*mu*r^8-48*b^4*c^4*mu*r^8+32*b^2*c^6*mu*r^8-8*c^8*mu*r^8+a^8*r^8-4*a^6*b^2*r^8-4*a^6*c^2*r^8+6*a^4*b^4*r^8+4*a^4*b^2*c^2*r^8+6*a^4*c^4*r^8-4*a^2*b^6*r^8+4*a^2*b^4*c^2*r^8+$
$4*a^2*b^2*c^4*r^8-4*a^2*c^6*r^8+b^8*r^8-4*b^6*c^2*r^8+6*b^4*c^4*r^8-4*b^2*c^6*r^8+c^8*r^8=0$     (4)

由于(4)不是关于$a,b,c$对称的方程,所以(3)是否有误?

------------------------------------------------------------------------------------------------------
上面的(3)计算有误,更正为

$8*R*(mu/r)^2*(c^2*sqrt(-c^2*mu^2+r^2)/b+b^2*sqrt(-b^2*mu^2+r^2)/c)+2*mu*a=a $       (3‘’)

对(3‘’)消元结果为:
4096*b^16*mu^12-8192*b^8*c^8*mu^12+4096*c^16*mu^12-8192*b^14*mu^10*r^2+8192*b^8*c^6*mu^10*r^2+8192*b^6*c^8*mu^10*r^2-8192*c^14*mu^10*r^2-512*a^4*b^8*mu^8*r^4-512*a^4*c^8*mu^8*r^4+1024*a^2*b^10*mu^8*r^4+1024*a^2*b^8*c^2*mu^8*r^4+1024*a^2*b^2*c^8*mu^8*r^4+1024*a^2*c^10*mu^8*r^4+3584*b^12*mu^8*r^4+1024*b^10*c^2*mu^8*r^4-512*b^8*c^4*mu^8*r^4-8192*b^6*c^6*mu^8*r^4-512*b^4*c^8*mu^8*r^4+1024*b^2*c^10*mu^8*r^4+3584*c^12*mu^8*r^4+512*a^4*b^8*mu^7*r^4+512*a^4*c^8*mu^7*r^4-1024*a^2*b^10*mu^7*r^4-1024*a^2*b^8*c^2*mu^7*r^4-1024*a^2*b^2*c^8*mu^7*r^4-1024*a^2*c^10*mu^7*r^4+512*b^12*mu^7*r^4-1024*b^10*c^2*mu^7*r^4+512*b^8*c^4*mu^7*r^4+512*b^4*c^8*mu^7*r^4-1024*b^2*c^10*mu^7*r^4+512*c^12*mu^7*r^4-128*a^4*b^8*mu^6*r^4+512*a^4*b^6*mu^6*r^6-128*a^4*c^8*mu^6*r^4+512*a^4*c^6*mu^6*r^6+256*a^2*b^10*mu^6*r^4+256*a^2*b^8*c^2*mu^6*r^4-1024*a^2*b^8*mu^6*r^6-1024*a^2*b^6*c^2*mu^6*r^6+256*a^2*b^2*c^8*mu^6*r^4-1024*a^2*b^2*c^6*mu^6*r^6+256*a^2*c^10*mu^6*r^4-1024*a^2*c^8*mu^6*r^6-128*b^12*mu^6*r^4+256*b^10*c^2*mu^6*r^4+512*b^10*mu^6*r^6-128*b^8*c^4*mu^6*r^4-1024*b^8*c^2*mu^6*r^6+512*b^6*c^4*mu^6*r^6-128*b^4*c^8*mu^6*r^4+512*b^4*c^6*mu^6*r^6+256*b^2*c^10*mu^6*r^4-1024*b^2*c^8*mu^6*r^6-128*c^12*mu^6*r^4+512*c^10*mu^6*r^6-512*a^4*b^6*mu^5*r^6-512*a^4*c^6*mu^5*r^6+1024*a^2*b^8*mu^5*r^6+1024*a^2*b^6*c^2*mu^5*r^6+1024*a^2*b^2*c^6*mu^5*r^6+1024*a^2*c^8*mu^5*r^6-512*b^10*mu^5*r^6+1024*b^8*c^2*mu^5*r^6-512*b^6*c^4*mu^5*r^6-512*b^4*c^6*mu^5*r^6+1024*b^2*c^8*mu^5*r^6-512*c^10*mu^5*r^6+16*a^8*mu^4*r^8-64*a^6*b^2*mu^4*r^8-64*a^6*c^2*mu^4*r^8+128*a^4*b^6*mu^4*r^6+96*a^4*b^4*mu^4*r^8+64*a^4*b^2*c^2*mu^4*r^8+128*a^4*c^6*mu^4*r^6+96*a^4*c^4*mu^4*r^8-256*a^2*b^8*mu^4*r^6-256*a^2*b^6*c^2*mu^4*r^6-64*a^2*b^6*mu^4*r^8+64*a^2*b^4*c^2*mu^4*r^8-256*a^2*b^2*c^6*mu^4*r^6+64*a^2*b^2*c^4*mu^4*r^8-256*a^2*c^8*mu^4*r^6-64*a^2*c^6*mu^4*r^8+128*b^10*mu^4*r^6-256*b^8*c^2*mu^4*r^6+16*b^8*mu^4*r^8+128*b^6*c^4*mu^4*r^6-64*b^6*c^2*mu^4*r^8+128*b^4*c^6*mu^4*r^6+96*b^4*c^4*mu^4*r^8-256*b^2*c^8*mu^4*r^6-64*b^2*c^6*mu^4*r^8+128*c^10*mu^4*r^6+16*c^8*mu^4*r^8-32*a^8*mu^3*r^8+128*a^6*b^2*mu^3*r^8+128*a^6*c^2*mu^3*r^8-192*a^4*b^4*mu^3*r^8-128*a^4*b^2*c^2*mu^3*r^8-192*a^4*c^4*mu^3*r^8+128*a^2*b^6*mu^3*r^8-128*a^2*b^4*c^2*mu^3*r^8-128*a^2*b^2*c^4*mu^3*r^8+128*a^2*c^6*mu^3*r^8-32*b^8*mu^3*r^8+128*b^6*c^2*mu^3*r^8-192*b^4*c^4*mu^3*r^8+128*b^2*c^6*mu^3*r^8-32*c^8*mu^3*r^8+24*a^8*mu^2*r^8-96*a^6*b^2*mu^2*r^8-96*a^6*c^2*mu^2*r^8+144*a^4*b^4*mu^2*r^8+96*a^4*b^2*c^2*mu^2*r^8+144*a^4*c^4*mu^2*r^8-96*a^2*b^6*mu^2*r^8+96*a^2*b^4*c^2*mu^2*r^8+96*a^2*b^2*c^4*mu^2*r^8-96*a^2*c^6*mu^2*r^8+24*b^8*mu^2*r^8-96*b^6*c^2*mu^2*r^8+144*b^4*c^4*mu^2*r^8-96*b^2*c^6*mu^2*r^8+24*c^8*mu^2*r^8-8*a^8*mu*r^8+32*a^6*b^2*mu*r^8+32*a^6*c^2*mu*r^8-48*a^4*b^4*mu*r^8-32*a^4*b^2*c^2*mu*r^8-48*a^4*c^4*mu*r^8+32*a^2*b^6*mu*r^8-32*a^2*b^4*c^2*mu*r^8-32*a^2*b^2*c^4*mu*r^8+32*a^2*c^6*mu*r^8-8*b^8*mu*r^8+32*b^6*c^2*mu*r^8-48*b^4*c^4*mu*r^8+32*b^2*c^6*mu*r^8-8*c^8*mu*r^8+a^8*r^8-4*a^6*b^2*r^8-4*a^6*c^2*r^8+6*a^4*b^4*r^8+4*a^4*b^2*c^2*r^8+6*a^4*c^4*r^8-4*a^2*b^6*r^8+4*a^2*b^4*c^2*r^8+4*a^2*b^2*c^4*r^8-4*a^2*c^6*r^8+b^8*r^8-4*b^6*c^2*r^8+6*b^4*c^4*r^8-4*b^2*c^6*r^8+c^8*r^8=0

从下面的例子可以看出:被圆所截的线段长并不是成比例的
360截图20140111172939283.jpg
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-1-4 15:33:15 | 显示全部楼层


按照星空的要求, 重新制作了动画.
现在已经很完美了,建议大家都体验一下.


总结发现, 重叠面积 总共要分16种情况讨论.

http://www.geogebratube.org/student/m67234
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-1-4 17:59:51 | 显示全部楼层
我觉得唯一的三角形  三边是2,2^0.5,2-2^0.5  (已经是个线段不是三角形了) 可以折叠到最大比例是2^0.5-1,  其他任何三角形都可以折叠到超过这个数值
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-1-4 18:43:55 | 显示全部楼层
mathe 发表于 2014-1-4 08:49
数值计算可以先制定折线方向,只允许平移之。此时,根据折线和边的相交情况,还要分成两种,对于每种情况 ...


分的这两张情况 应该是指 折痕与两个边相交的情况吧.
其实,折痕与第三个边相交的交点的位置 很重要的.
直接影响到 重叠区域的形状, 是三角形还是四边形...

对于你说的两种情况的任何一种,重叠区域均有可能是 三角形或者四边形...
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-1-4 18:59:33 | 显示全部楼层
当然,如果 确定了 折痕 的方向,  然后 根据折痕 与两个边相交的确可以分为两种情况,  这里的相交是 线段相交, 而不是直线相交.

但折叠之后, 翻折过去的点 是落在 三角形内,还是三角形区域的外面 , 仍然需要 分情况 讨论.
如果没错的话, 总共16种情况
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-24 09:49 , Processed in 0.030112 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表