- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19896
- 在线时间
- 小时
|
楼主 |
发表于 2014-1-5 15:29:02
|
显示全部楼层
难怪你算不出来的,你的式子有理化展开
$-2*m*n*q*y-m^2*y+2*m*n*x-n^2*y+r^2*y=0$ (1)
$-m^4+2*m^2*n^2+2*m^2*r^2-n^4+2*n^2*r^2-r^4-p^2=0$(2)
48*m^5*n*p*q^2*x^2*y^2+64*m^5*n*q^2*s*x^2*y^2-128*m^4*n*p*q^2*x^3*y^2+16*m^4*p*q^2*x^3*y^3-64*m^3*n^3*p*q^2*x^2*y^2-128*m^3*n^3*q^2*s*x^2*y^2+64*m^3*n^2*p*q^2*x^2*y^3-64*m^3*n*p*q^2*r^2*x^2*y^2+64*m^3*n*p*q^2*x^4*y^2-32*m^3*n*p*q^2*x^2*y^4+128*m^2*n^3*p*q^2*x^3*y^2-32*m^2*n^2*p*q^2*x^3*y^3+128*m^2*n*p*q^2*r^2*x^3*y^2+16*m*n^5*p*q^2*x^2*y^2+64*m*n^5*q^2*s*x^2*y^2-64*m*n^4*p*q^2*x^2*y^3-32*m*n^3*p*q^2*r^2*x^2*y^2-64*m*n^3*p*q^2*x^4*y^2+32*m*n^3*p*q^2*x^2*y^4+64*m*n^2*p*q^2*r^2*x^2*y^3+16*m*n*p*q^2*r^4*x^2*y^2-64*m*n*p*q^2*r^2*x^4*y^2-32*m*n*p*q^2*r^2*x^2*y^4-64*m*n*q^2*r^4*s*x^2*y^2+16*n^4*p*q^2*x^3*y^3-16*p*q^2*r^4*x^3*y^3-48*m^5*n*p*q*x^3*y-48*m^5*n*p*q*x*y^3-64*m^5*n*q*s*x^3*y-64*m^5*n*q*s*x*y^3+128*m^4*n*p*q*x^4*y+128*m^4*n*p*q*x^2*y^3-16*m^4*p*q*x^4*y^2-16*m^4*p*q*x^2*y^4+64*m^3*n^3*p*q*x^3*y+64*m^3*n^3*p*q*x*y^3+128*m^3*n^3*q*s*x^3*y+128*m^3*n^3*q*s*x*y^3-64*m^3*n^2*p*q*x^3*y^2-64*m^3*n^2*p*q*x*y^4+16*m^3*n*p^3*q*x^2*y^2-64*m^3*n*p*q^3*x^2*y^2+64*m^3*n*p*q*r^2*x^3*y+64*m^3*n*p*q*r^2*x*y^3-64*m^3*n*p*q*x^5*y-32*m^3*n*p*q*x^3*y^3+32*m^3*n*p*q*x*y^5-128*m^2*n^3*p*q*x^4*y-128*m^2*n^3*p*q*x^2*y^3+32*m^2*n^2*p*q*x^4*y^2+32*m^2*n^2*p*q*x^2*y^4-32*m^2*n*p^3*q*x^3*y^2+128*m^2*n*p*q^3*x^3*y^2-128*m^2*n*p*q*r^2*x^4*y-128*m^2*n*p*q*r^2*x^2*y^3-16*m*n^5*p*q*x^3*y-16*m*n^5*p*q*x*y^3-64*m*n^5*q*s*x^3*y-64*m*n^5*q*s*x*y^3+64*m*n^4*p*q*x^3*y^2+64*m*n^4*p*q*x*y^4+8*m*n^3*p^3*q*x^2*y^2-32*m*n^3*p*q^3*x^2*y^2+32*m*n^3*p*q*r^2*x^3*y+32*m*n^3*p*q*r^2*x*y^3+64*m*n^3*p*q*x^5*y+32*m*n^3*p*q*x^3*y^3-32*m*n^3*p*q*x*y^5-16*m*n^2*p^3*q*x^2*y^3+64*m*n^2*p*q^3*x^2*y^3-64*m*n^2*p*q*r^2*x^3*y^2-64*m*n^2*p*q*r^2*x*y^4-8*m*n*p^3*q*r^2*x^2*y^2+16*m*n*p^3*q*x^4*y^2+8*m*n*p^3*q*x^2*y^4+32*m*n*p^2*q*r^2*s*x^2*y^2+32*m*n*p*q^3*r^2*x^2*y^2-64*m*n*p*q^3*x^4*y^2-32*m*n*p*q^3*x^2*y^4-16*m*n*p*q*r^4*x^3*y-16*m*n*p*q*r^4*x*y^3+64*m*n*p*q*r^2*x^5*y+96*m*n*p*q*r^2*x^3*y^3+32*m*n*p*q*r^2*x*y^5-128*m*n*q^3*r^2*s*x^2*y^2+64*m*n*q*r^4*s*x^3*y+64*m*n*q*r^4*s*x*y^3-16*n^4*p*q*x^4*y^2-16*n^4*p*q*x^2*y^4+8*p^3*q*r^2*x^3*y^3-32*p*q^3*r^2*x^3*y^3+16*p*q*r^4*x^4*y^2+16*p*q*r^4*x^2*y^4+48*m^5*n*p*x^2*y^2+64*m^5*n*s*x^2*y^2-128*m^4*n*p*x^3*y^2+16*m^4*p*x^3*y^3-64*m^3*n^3*p*x^2*y^2-128*m^3*n^3*s*x^2*y^2+64*m^3*n^2*p*x^2*y^3-12*m^3*n*p^3*x^3*y-4*m^3*n*p^3*x*y^3-16*m^3*n*p^2*s*x^3*y+16*m^3*n*p^2*s*x*y^3+80*m^3*n*p*q^2*x^3*y+112*m^3*n*p*q^2*x*y^3-64*m^3*n*p*r^2*x^2*y^2+64*m^3*n*p*x^4*y^2-32*m^3*n*p*x^2*y^4-64*m^3*n*q^2*s*x^3*y+64*m^3*n*q^2*s*x*y^3+128*m^2*n^3*p*x^3*y^2-32*m^2*n^2*p*x^3*y^3+32*m^2*n*p^3*x^4*y-128*m^2*n*p*q^2*x^4*y-256*m^2*n*p*q^2*x^2*y^3+128*m^2*n*p*r^2*x^3*y^2-4*m^2*p^3*x^4*y^2+4*m^2*p^3*x^2*y^4-16*m^2*p*q^2*x^4*y^2+16*m^2*p*q^2*x^2*y^4+16*m*n^5*p*x^2*y^2+64*m*n^5*s*x^2*y^2-64*m*n^4*p*x^2*y^3-4*m*n^3*p^3*x^3*y-4*m*n^3*p^3*x*y^3+16*m*n^3*p^2*s*x^3*y-16*m*n^3*p^2*s*x*y^3+48*m*n^3*p*q^2*x^3*y+48*m*n^3*p*q^2*x*y^3-32*m*n^3*p*r^2*x^2*y^2-64*m*n^3*p*x^4*y^2+32*m*n^3*p*x^2*y^4+64*m*n^3*q^2*s*x^3*y-64*m*n^3*q^2*s*x*y^3+16*m*n^2*p^3*x*y^4-128*m*n^2*p*q^2*x^3*y^2-64*m*n^2*p*q^2*x*y^4+64*m*n^2*p*r^2*x^2*y^3+m*n*p^5*x^2*y^2-4*m*n*p^4*s*x^2*y^2-8*m*n*p^3*q^2*x^2*y^2+4*m*n*p^3*r^2*x^3*y+4*m*n*p^3*r^2*x*y^3-16*m*n*p^3*x^5*y-8*m*n*p^3*x*y^5+32*m*n*p^2*q^2*s*x^2*y^2-16*m*n*p^2*r^2*s*x^3*y-16*m*n*p^2*r^2*s*x*y^3+16*m*n*p*q^4*x^2*y^2-48*m*n*p*q^2*r^2*x^3*y-48*m*n*p*q^2*r^2*x*y^3+64*m*n*p*q^2*x^5*y+192*m*n*p*q^2*x^3*y^3+32*m*n*p*q^2*x*y^5+16*m*n*p*r^4*x^2*y^2-64*m*n*p*r^2*x^4*y^2-32*m*n*p*r^2*x^2*y^4-64*m*n*q^4*s*x^2*y^2+192*m*n*q^2*r^2*s*x^3*y+192*m*n*q^2*r^2*s*x*y^3-64*m*n*r^4*s*x^2*y^2+16*n^4*p*x^3*y^3+4*n^2*p^3*x^4*y^2-4*n^2*p^3*x^2*y^4+16*n^2*p*q^2*x^4*y^2-16*n^2*p*q^2*x^2*y^4-p^5*x^3*y^3+8*p^3*q^2*x^3*y^3-4*p^3*r^2*x^4*y^2-4*p^3*r^2*x^2*y^4-16*p*q^4*x^3*y^3+48*p*q^2*r^2*x^4*y^2+48*p*q^2*r^2*x^2*y^4-16*p*r^4*x^3*y^3-16*m^3*n*p*q*x^4-128*m^3*n*p*q*x^2*y^2-48*m^3*n*p*q*y^4+64*m^3*n*q*s*x^4-64*m^3*n*q*s*y^4+256*m^2*n*p*q*x^3*y^2+128*m^2*n*p*q*x*y^4+16*m^2*p*q*x^5*y-16*m^2*p*q*x*y^5-16*m*n^3*p*q*x^4-64*m*n^3*p*q*x^2*y^2-16*m*n^3*p*q*y^4-64*m*n^3*q*s*x^4+64*m*n^3*q*s*y^4+64*m*n^2*p*q*x^4*y+128*m*n^2*p*q*x^2*y^3+8*m*n*p^3*q*x^3*y+8*m*n*p^3*q*x*y^3-32*m*n*p^2*q*s*x^3*y-32*m*n*p^2*q*s*x*y^3-32*m*n*p*q^3*x^3*y-32*m*n*p*q^3*x*y^3+16*m*n*p*q*r^2*x^4+64*m*n*p*q*r^2*x^2*y^2+16*m*n*p*q*r^2*y^4-160*m*n*p*q*x^4*y^2-128*m*n*p*q*x^2*y^4+128*m*n*q^3*s*x^3*y+128*m*n*q^3*s*x*y^3-64*m*n*q*r^2*s*x^4-256*m*n*q*r^2*s*x^2*y^2-64*m*n*q*r^2*s*y^4-16*n^2*p*q*x^5*y+16*n^2*p*q*x*y^5-8*p^3*q*x^4*y^2-8*p^3*q*x^2*y^4+32*p*q^3*x^4*y^2+32*p*q^3*x^2*y^4-16*p*q*r^2*x^5*y-64*p*q*r^2*x^3*y^3-16*p*q*r^2*x*y^5+16*m^3*n*p*x^3*y+48*m^3*n*p*x*y^3-64*m^3*n*s*x^3*y+64*m^3*n*s*x*y^3-128*m^2*n*p*x^2*y^3-16*m^2*p*x^4*y^2+16*m^2*p*x^2*y^4+16*m*n^3*p*x^3*y+16*m*n^3*p*x*y^3+64*m*n^3*s*x^3*y-64*m*n^3*s*x*y^3-64*m*n^2*p*x^3*y^2-4*m*n*p^3*x^4-4*m*n*p^3*y^4+16*m*n*p^2*s*x^4+16*m*n*p^2*s*y^4+16*m*n*p*q^2*x^4+64*m*n*p*q^2*x^2*y^2+16*m*n*p*q^2*y^4-16*m*n*p*r^2*x^3*y-16*m*n*p*r^2*x*y^3+96*m*n*p*x^3*y^3-64*m*n*q^2*s*x^4-256*m*n*q^2*s*x^2*y^2-64*m*n*q^2*s*y^4+64*m*n*r^2*s*x^3*y+64*m*n*r^2*s*x*y^3+16*n^2*p*x^4*y^2-16*n^2*p*x^2*y^4+4*p^3*x^5*y+4*p^3*x*y^5-16*p*q^2*x^5*y-64*p*q^2*x^3*y^3-16*p*q^2*x*y^5+16*p*r^2*x^4*y^2+16*p*r^2*x^2*y^4-32*m*n*p*q*x^3*y-32*m*n*p*q*x*y^3+128*m*n*q*s*x^3*y+128*m*n*q*s*x*y^3+32*p*q*x^4*y^2+32*p*q*x^2*y^4+16*m*n*p*x^2*y^2-64*m*n*s*x^2*y^2-16*p*x^3*y^3=0 (3)
若需要化为${m,n,r,s,x,y}$的方程,对以上(1~3)消元${p,q}$得到的消元结果14444项之多,你想数值求解也是不太可能的! |
|