找回密码
 欢迎注册
楼主: 0→∞

[求助] 果树问题讨论:这两个问题等价么?

  [复制链接]
发表于 2019-9-22 18:52:19 | 显示全部楼层
mathe 发表于 2008-8-1 07:58
应该不等价
---------------------------
算法简介:

@mathe  2#上传的果树问题14棵树到18棵树的一些解的文件不能下载了,麻烦有空能否再上传一下。这些结果最近有更新吗?19棵树有类似的统计文件吗?

点评

我现在还没有全部重新产生过。  发表于 2019-9-22 19:05
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-22 19:28:46 | 显示全部楼层
二十棵树问题.docx (585.75 KB, 下载次数: 13)
我把论坛里面相关信息提取到一个word文件,可以参考一下
大家有空可以帮忙修订一下,然后最好备份到某个共享空间,以防丢失
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-9-25 22:40:03 来自手机 | 显示全部楼层
3棵树的下界和n充分大时的最优解是1+[n(n-3)/6]行,而不是[n(n-3)/6]行,另外最好能添加一节参考文献。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:22:31 | 显示全部楼层
由于过去数据都丢失了,现在开始重新计算一些以前的数据。
8棵树一下太简单了,就不罗列了,
对于9棵树,从点线关系,本质上只有一种达到了3行
  1. print(ABGHCDGIEFHI);
  2. solve([],[]);
  3. print("A=(1,A_y,0) B=(1,B_y,0) C_x=0 C_y=1 D_x=0 E_x=1 E_y=0 F_y=0 G=(0,1,0) H=(1,0,0) I_x=0 I_y=0 ");
复制代码

但是9棵树3行的这个解中,点A和B都可以在直线GH上自由移动,所以有两个参数A_y,B_y可选。
t9.gif

对于10棵树5行,点线关系也只有一种:
  1. print(ABCDAEFGBEHICFHJDGIJ);
  2. solve([+1*D_Y-1*D_Y*I_X-1*J_Y-1*D_Y*J_Y,+1*G_Y+1*D_Y*I_X,-1+1*J_X+1*J_Y,+1+1*C_Y],[D_Y,G_Y,I_X,J_Y,J_X,C_Y]);
  3. print("A=(0,1,0) B=(1,0,0) C=(1,C_y,0) D=(1,D_y,0) E_x=0 E_y=0 F_x=0 F_y=1 G_x=0 H_x=1 H_y=0 I_y=0 ");
复制代码

也即是C_Y=-1, J_X=1-J_Y, G_Y=-D_Y*I_X, D_Y=J_Y/(1-I_X), 好像自由度还是很大。
大家帮忙再分析一下。
t10.gif
=====
wayne解
{{10,5},"ABCDAEFGBEHICFHJDGIJ",{{{"A",{0,1,0}},{"B",{1,0,0}},{"C",{1,-1,0}},{"D",{1,Dy,0}},{"E",{0,0,1}},{"F",{0,1,1}},{"G",{0,-Dy Ix if 1+Dy!=0,1}},{"H",{1,0,1}},{"I",{Ix,0,1}},{"J",{(1+Dy Ix)/(1+Dy) if 1+Dy!=0,(Dy-Dy Ix)/(1+Dy) if 1+Dy!=0,1}}},{{"A",{0,1,0}},{"B",{1,0,0}},{"C",{1,-1,0}},{"D",{1,-1,0}},{"E",{0,0,1}},{"F",{0,1,1}},{"G",{0,1,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1-Jy,Jy,1}}}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:27:15 | 显示全部楼层
同样11棵树6行也只有一种合法点线关系:
  1. print(ABCJADEKBFGKCHIKDFHJEGIJ);
  2. solve([+1-1*K_X+1*I_Y*K_X,+1*D_Y-1*E_Y-1*D_Y*K_X,+1*A_Y+1*D_Y-1*E_Y,+1+1*H_Y-1*I_Y,-1+1*I_X,-1+1*E_X],[D_Y,E_Y,I_Y,K_X,A_Y,H_Y,I_X,E_X]);
  3. print("A_x=0 B_x=0 B_y=0 C_x=0 C_y=1 D=(1,D_y,0) F=(1,0,0) G_x=1 G_y=0 H=(1,H_y,0) J=(0,1,0) K_y=0 ");
复制代码

所以已经求出E_X=I_X=1,  H_Y=I_Y-1, A_Y=E_Y-D_Y, D_Y=E_Y/(1-K_X), K_X=1/(1-I_Y), 所以同样由于存在很多自由参数,解的数目应该可以构造出很多,但是它们的点线关系都是一致的。
======
wayne解:
{{11,6},"ABCJADEKBFGKCHIKDFHJEGIJ",{{{"A",{0,Ay,1}},{"B",{0,0,1}},{"C",{0,1,1}},{"D",{1,-Ay+Ey if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),0}},{"E",{1,Ey,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,-1+Ey/Ay if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),0}},{"I",{1,Ey/Ay if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),1}},{"J",{0,1,0}},{"K",{Ay/(Ay-Ey) if (0<Ay<Ey||Ay<0||Ay>Ey||Ey<=0)&&(Ey<Ay<0||Ay<Ey||Ay>0||Ey>0),0,1}}},{{"A",{0,0 if Kx!=0,1}},{"B",{0,0,1}},{"C",{0,1,1}},{"D",{1,0 if Kx!=0,0}},{"E",{1,0 if Kx!=0,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,-(1/Kx) if Kx!=0,0}},{"I",{1,(-1+Kx)/Kx if Kx!=0,1}},{"J",{0,1,0}},{"K",{Kx,0,1}}}}}
t11.png
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:32:13 | 显示全部楼层
12棵树时,开始出现复杂的情况了,
首先,我们可以在复数范围得出两种点线关系不同的8行的情况
  1. print(ABCDAEFGAHIJBEHKBFILCEJLCGIKDFJKDGHL);
  2. solve([+1-1*L_X+1*L_X*L_X,-1+1*K_X+1*L_X,-1+1*J_Y+1*L_X,+1*G_Y-1*L_X,-1+1*C_Y+1*L_X,-1+1*J_X,-1+1*I_X,-1+1*L_Y,+1*D_Y+1*L_X,-1+1*I_Y],[L_X,K_X,J_Y,G_Y,C_Y,J_X,I_X,L_Y,D_Y,I_Y]);
  3. print("A=(0,1,0) B=(1,0,0) C=(1,C_y,0) D=(1,D_y,0) E_x=0 E_y=0 F_x=0 F_y=1 G_x=0 H_x=1 H_y=0 K_y=0 ");

  4. print(AEFGAHIJBEHKBFILCEJLCGIKDFJKDGHL);
  5. solve([+1-1*L_Y+1*L_Y*L_Y,-1+1*C_Y,+1*C_X+1*L_Y,-1+1*K_Y+1*L_Y,-1+1*L_X+1*L_Y,-1+1*D_Y,+1+1*J_Y-1*L_Y,+1+1*I_Y,-1+1*G_X+1*L_Y,-1+1*D_X+1*L_Y],[L_Y,C_Y,C_X,K_Y,L_X,D_Y,J_Y,I_Y,G_X,D_X]);
  6. print("A=(1,0,0) B_x=0 B_y=1 E_x=0 E_y=0 F_x=1 F_y=0 G_y=0 H=(0,1,0) I=(1,I_y,0) J=(1,J_y,0) K_x=0 ");
复制代码

可以看出,上面遗留的方程中分别L_X, L_Y只有复数根。

而12棵树在实数和有理数范围都可以达到7行
  1. print(AHIJBCHKBDILCEJLDGJKEFIKFGHL);
  2. solve([+1*D_X-1*K_Y,-1+1*E_X+1*K_Y,+1+1*G_Y-1*K_Y,+1+1*J_Y,+1*F_Y-1*K_Y,+1*E_Y-1*K_Y,-1+1*F_X,-1+1*G_X],[D_X,E_X,G_Y,J_Y,F_Y,E_Y,F_X,G_X]);
  3. print("A=(1,A_y,0) B_x=0 B_y=0 C_x=0 C_y=1 D_y=0 H=(0,1,0) I=(1,0,0) J=(1,J_y,0) K_x=0 L_x=1 L_y=0 ");
  4. print(ABIJACDKBEFLCGILDHJLEHIKFGJK);
  5. solve([+1*F_Y-1*K_Y+1*E_X*K_Y,-1+1*B_X+1*F_Y,+1*F_X+1*F_Y-1*K_Y,+1*G_X-1*K_Y,+1*H_Y+1*K_Y,+1+1*J_Y,+1*E_Y-1*F_Y,+1*B_Y-1*F_Y],[E_X,F_Y,K_Y,B_X,F_X,G_X,H_Y,J_Y,E_Y,B_Y]);
  6. print("A_x=0 A_y=1 C_x=0 C_y=0 D=(0,1,0) G_y=0 H=(1,H_y,0) I_x=1 I_y=0 J=(1,J_y,0) K_x=0 L=(1,0,0) ");
复制代码



==========
wayne解:
{{12,7},"AHIJBCHKBDILCEJLDGJKEFIKFGHL",{{{"A",{1,Ay,0}},{"B",{0,0,1}},{"C",{0,1,1}},{"D",{Ey,0,1}},{"E",{1-Ey,Ey,1}},{"F",{1,Ey,1}},{"G",{1,-1+Ey,1}},{"H",{0,1,0}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{0,Ey,1}},{"L",{1,0,1}}}}}
t12.png

{{12,7},"ABIJACDKBEFLCGILDHJLEHIKFGJK",{{{"A",{0,1,1}},{"B",{1+Hy-Ex Hy,(-1+Ex) Hy,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{Ex,(-1+Ex) Hy,1}},{"F",{-Ex Hy,(-1+Ex) Hy,1}},{"G",{-Hy,0,1}},{"H",{1,Hy,0}},{"I",{1,0,1}},{"J",{1,-1,0}},{"K",{0,-Hy,1}},{"L",{1,0,0}}}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:34:14 | 显示全部楼层
13棵树9行还留下不超过6种模式(最好能够再验算一下是否每种都是合法的),其中第二种是有理解:

  1. print(ADEFAGHIBDGJBHKLCDKMCEILEHJMFGLMFIJK);
  2. solve([+1+1*M_Y+1/2*M_Y*M_Y,+2+1*L_Y+2*M_Y,+1+1*K_X,-1+1*L_X-1*M_Y,+1+1*B_X+1*M_Y,+2+1*C_Y+1*M_Y,-1+1*C_X-1*M_Y,-1+1*I_X-1*M_Y,+1*K_Y+1*M_Y,+1+1*H_Y,+1*I_Y+1*M_Y,+1*F_Y+1*M_Y],[M_Y,L_Y,K_X,L_X,B_X,C_Y,C_X,I_X,K_Y,H_Y,I_Y,F_Y]);
  3. print("A_x=0 A_y=1 B_y=0 D_x=0 D_y=0 E=(0,1,0) F_x=0 G_x=1 G_y=0 H=(1,H_y,0) J=(1,0,0) M=(1,M_y,0) ");
  4. print(ABEFAGHMBIJMCEKMCGILDFLMDGJKEHJLFHIK);
  5. solve([+2+1*L_Y,+1+1*L_X,-4+1*C_Y,-3+1*G_Y,-2+1*K_Y,+4+1*D_Y,+1+1*J_Y,-1+1*K_X,-1+1*H_Y,-1+1*C_X,+1+1*D_X,+1+1*F_X],[L_Y,L_X,C_Y,G_Y,K_Y,D_Y,J_Y,K_X,H_Y,C_X,D_X,F_X]);
  6. print("A=(1,0,0) B_x=0 B_y=0 E_x=1 E_y=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 I_y=1 J_x=0 M=(0,1,0) ");
  7. t13.png
  8. print(BCDEBFGHBIJKCFILCGJMDFKMDHJLEGKLEHIM);
  9. solve([+1-1*M_X+1*M_X*M_X,-1+1*L_X+1*M_X,-1+1*K_Y+1*M_X,+1*H_Y-1*M_X,-1+1*D_Y+1*M_X,-1+1*K_X,-1+1*J_X,-1+1*M_Y,+1*E_Y+1*M_X,-1+1*J_Y],[M_X,L_X,K_Y,H_Y,D_Y,K_X,J_X,M_Y,E_Y,J_Y]);
  10. print("B=(0,1,0) C=(1,0,0) D=(1,D_y,0) E=(1,E_y,0) F_x=0 F_y=0 G_x=0 G_y=1 H_x=0 I_x=1 I_y=0 L_y=0 ");
  11. print(AEFGAHIMBEHJBFKMCELMCGIKDGJMDHKLFIJL);
  12. solve([+1+1*L_Y-1*L_Y*L_Y,+1+1*D_Y-1*L_Y,-1+1*C_Y-1*L_Y,+2+1*H_Y-1*L_Y,+1+1*J_Y,-1+1*B_Y+1*L_Y,+1*L_X+1*L_Y,-1+1*J_X,+1*E_X+1*L_Y,+1*C_X+1*L_Y,-1+1*D_X,+1+1*I_Y],[L_Y,D_Y,C_Y,H_Y,J_Y,B_Y,L_X,J_X,E_X,C_X,D_X,I_Y]);
  13. print("A=(1,0,0) B_x=0 E_y=0 F_x=0 F_y=0 G_x=1 G_y=0 H=(1,H_y,0) I=(1,I_y,0) K_x=0 K_y=1 M=(0,1,0) ");
  14. print(ABLMAFGHBIJKCFILCGJMDFKMDHJLEGKLEHIM);
  15. solve([+1+1*M_Y+1*M_Y*M_Y,+1+1*K_X+1*M_Y,+1/3+1*B_Y-1/3*M_Y,+1+1*D_X,+1*E_X+1*M_Y,+1*J_X-1*M_Y,-1+1*C_X-1*M_Y,+1*D_Y+1*M_Y,-1+1*E_Y,-1+1*K_Y,+1*J_Y+1*M_Y,+1*H_Y+1*M_Y],[M_Y,K_X,B_Y,D_X,E_X,J_X,C_X,D_Y,E_Y,K_Y,J_Y,H_Y]);
  16. print("A=(0,1,0) B=(1,B_y,0) C_y=0 F_x=0 F_y=0 G_x=0 G_y=1 H_x=0 I_x=1 I_y=0 L=(1,0,0) M=(1,M_y,0) ");
  17. print(ABKLAGHMBIJMCDKMCGILDHJLEFLMEHIKFGJK);
  18. solve([+1-1*K_X*K_X,-1+1*F_Y+1*K_X,-1+1*D_Y+1*K_X,+1+1*E_Y-1*K_X,+1+1*C_Y-1*K_X,+1*I_Y-1*K_X,-1+1*E_X,-1+1*F_X,+1*G_Y+1*K_X,+1*C_X-1*K_X,+1+1*H_Y,+1*D_X-1*K_X],[K_X,F_Y,D_Y,E_Y,C_Y,I_Y,E_X,F_X,G_Y,C_X,H_Y,D_X]);
  19. print("A=(1,0,0) B_x=0 B_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 J_x=0 J_y=1 K_y=0 L_x=1 L_y=0 M=(0,1,0) ");
复制代码

其中最后一个要求K_X=1或-1,但是K_X=1会导致F_Y=0,这是不允许的,所以只能K_X=-1。

=======
wayne实数解:
{{13,9},"ABEFAGHMBIJMCEKMCGILDFLMDGJKEHJLFHIK",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{1,4,1}},{"D",{-1,-4,1}},{"E",{1,0,1}},{"F",{-1,0,1}},{"G",{1,3,0}},{"H",{1,1,0}},{"I",{0,1,1}},{"J",{0,-1,1}},{"K",{1,2,1}},{"L",{-1,-2,1}},{"M",{0,1,0}}}}}
{{13,9},"AEFGAHIMBEHJBFKMCELMCGIKDGJMDHKLFIJL",{{{"A",{1,0,0}},{"B",{0,1/2 (1-Sqrt[5]),1}},{"C",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"D",{1,1/2 (-1+Sqrt[5]),1}},{"E",{1/2 (-1-Sqrt[5]),0,1}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{1,1/2 (-3+Sqrt[5]),0}},{"I",{1,-1,0}},{"J",{1,-1,1}},{"K",{0,1,1}},{"L",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"M",{0,1,0}}},{{"A",{1,0,0}},{"B",{0,1/2 (1+Sqrt[5]),1}},{"C",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"D",{1,1/2 (-1-Sqrt[5]),1}},{"E",{1/2 (-1+Sqrt[5]),0,1}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{1,1/2 (-3-Sqrt[5]),0}},{"I",{1,-1,0}},{"J",{1,-1,1}},{"K",{0,1,1}},{"L",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"M",{0,1,0}}}}}
{{13,9},"ABKLAGHMBIJMCDKMCGILDHJLEFLMEHIKFGJK",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{-1,-2,1}},{"D",{-1,2,1}},{"E",{1,-2,1}},{"F",{1,2,1}},{"G",{1,1,0}},{"H",{1,-1,0}},{"I",{0,-1,1}},{"J",{0,1,1}},{"K",{-1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}}},{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{1,0,1}},{"D",{1,0,1}},{"E",{1,0,1}},{"F",{1,0,1}},{"G",{1,-1,0}},{"H",{1,-1,0}},{"I",{0,1,1}},{"J",{0,1,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}}}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:42:01 | 显示全部楼层
14棵树情况很复杂,计算机处理以后10行以上还余下99种(里面还包含增根,需要大家帮忙再处理一下,淘汰增根)
从我们留在OEIS中记录信息可以知道存在10行的实数和整数解,以及11行的复数解。
  1. print(ACDEAFGHBIJKBLMNCFILCGJMDFJNDHKLEGKNEHIM);
  2. solve([+1-1*F_Y*I_Y+1*I_Y*J_X+1*I_Y*J_Y+1*J_Y*J_Y,+1*F_Y+1*I_Y*J_Y+1*J_Y*J_Y,+1*I_Y-1*I_Y*J_X+1*J_Y,+1*J_X+1*I_Y*J_X+1*I_Y*J_Y+1*J_X*J_Y+1*J_Y*J_Y,+1*F_X+1*F_Y-1*J_X,+1+1*A_X+1*I_Y-1*J_X+1*J_Y,+1*D_X+1*I_Y+1*J_Y,-1+1*D_Y-1*I_Y-1*J_Y,+1*G_X-1*J_X,+1*C_X-1*J_X,+1*B_Y+1*I_Y,-1+1*C_Y-1*I_Y-1*J_Y,+1+1*H_Y,-1+1*A_Y-1*I_Y-1*J_Y],[F_Y,I_Y,J_X,J_Y,F_X,A_X,D_X,D_Y,G_X,C_X,B_Y,C_Y,H_Y,A_Y]);
  3. print("B_x=0 E=(1,0,0) G_y=0 H=(1,H_y,0) I=(1,I_y,0) K_x=1 K_y=0 L_x=0 L_y=1 M=(0,1,0) N_x=0 N_y=0 ");
  4. print(AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEGKLFHIJ);
  5. solve([+1-1*J_Y*K_Y+1*L_Y+1*J_Y*L_Y,+1*J_Y+1*L_Y+1*J_Y*L_Y,-1+1*D_Y-2*L_Y,+1+1*C_Y,-1+1*H_Y-1*L_Y,+1*K_X+1*K_Y,+1*L_X+1*L_Y,-1+1*F_Y+1*J_Y,+1*H_X+1*L_Y,+1*C_X+1*K_Y,+1+1*G_Y,+1*D_X+1*L_Y,+1*I_X+1*K_Y],[J_Y,K_Y,L_Y,D_Y,C_Y,H_Y,K_X,L_X,F_Y,H_X,C_X,G_Y,D_X,I_X]);
  6. print("A_x=0 A_y=1 B=(1,0,0) E_x=0 E_y=0 F_x=0 G=(1,G_y,0) I_y=0 J=(1,J_y,0) M=(0,1,0) N_x=1 N_y=0 ");
  7. print(AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEHJKFGIL);
  8. solve([+1-2*G_X*K_Y+2*G_X*L_Y-1*K_Y*L_Y,+1*C_X-1*C_X*K_Y-2*G_X*K_Y+1*L_Y+2*G_X*L_Y-1*K_Y*L_Y,+1*G_X-2*G_X*K_Y+1*G_X*L_Y-1*K_Y*L_Y,+1*K_Y-1*G_X*K_Y+1*G_X*L_Y-1*K_Y*L_Y,+1+1*I_Y-1*K_Y,+1+1*B_Y-1*L_Y,+1*D_Y-1*K_Y,+1*F_Y-1*K_Y,-1+1*D_X+1*K_Y,-1+1*L_X+1*L_Y,-1+1*K_X,-1+1*J_X,+1*C_Y-1*L_Y,+1*J_Y-1*L_Y],[C_X,G_X,K_Y,L_Y,I_Y,B_Y,D_Y,F_Y,D_X,L_X,K_X,J_X,C_Y,J_Y]);
  9. print("A_x=0 A_y=0 B=(1,B_y,0) E=(0,1,0) F_x=0 G_y=0 H_x=1 H_y=0 I=(1,I_y,0) M_x=0 M_y=1 N=(1,0,0) ");
  10. print(AEFMAGHNBEINBGJMCHKMCJLNDFKNDILMEGKLFHIJ);
  11. solve([+1-1*N_X+1*L_Y*N_X,+1*G_Y-1*J_X*L_Y,+1*J_X+1*L_Y*N_X-1*N_X*N_X,+1*A_Y*J_X-1*J_X*L_Y-1*A_Y*N_X,+1*L_Y+1*A_Y*N_X-1*L_Y*N_X,-1+1*J_Y-1*L_Y+1*N_X,+1*E_Y-1*L_Y,-1+1*B_Y-1*G_Y+1*N_X,-1+1*L_X,-1+1*I_X,+1*B_X-1*J_X,+1*G_X-1*J_X,-1+1*I_Y-1*L_Y+1*N_X,-1+1*H_Y-1*L_Y+1*N_X],[A_Y,G_Y,J_X,L_Y,N_X,J_Y,E_Y,B_Y,L_X,I_X,B_X,G_X,I_Y,H_Y]);
  12. print("A=(1,A_y,0) C_x=0 C_y=1 D_x=1 D_y=0 E=(1,E_y,0) F=(1,0,0) H_x=0 K_x=0 K_y=0 M=(0,1,0) N_y=0 ");
  13. print(ACDEAFGHBCIJBKLMCFKNDFJMDGILEGMNEHIKHJLN);
  14. solve([+1-2*I_Y+2*I_Y*I_Y,-1+1*A_X+2*I_Y,+1+1*A_Y-1*I_Y,-1+1*I_X+2*I_Y,+1*H_Y+1*I_Y,-1+1*E_Y+1*I_Y,-1+1*B_X+1*I_Y,-1+1*D_X+1*I_Y,+1*G_Y+1*I_Y,+1+1*L_Y,-1+1*E_X,-1+1*G_X,+1*C_Y-1*I_Y,+1*B_Y-1*I_Y],[I_Y,A_X,A_Y,I_X,H_Y,E_Y,B_X,D_X,G_Y,L_Y,E_X,G_X,C_Y,B_Y]);
  15. print("C_x=0 D_y=0 F_x=0 F_y=0 H=(1,H_y,0) J=(1,0,0) K_x=0 K_y=1 L=(1,L_y,0) M_x=1 M_y=0 N=(0,1,0) ");
  16. print(ACDEAFGHBCIJBKLMCFKNDGILDHJKEFIMEHLNGJMN);
  17. solve([+1+1*M_Y+1/2*M_Y*M_Y,+1*A_Y+1/2*M_Y,-2+1*I_Y,-1+1*E_X-1*M_Y,+1+1*I_X,+1*F_X-1*M_Y,+1*B_Y+2*M_Y,+1*A_X-1/2*M_Y,+1*F_Y+1*M_Y,+1*C_Y+1*M_Y,+1+1*G_Y,+1+1*C_X,+1*K_Y+1*M_Y,+1+1*B_X],[M_Y,A_Y,I_Y,E_X,I_X,F_X,B_Y,A_X,F_Y,C_Y,G_Y,C_X,K_Y,B_X]);
  18. print("D_x=0 D_y=1 E_y=0 G=(1,G_y,0) H_x=0 H_y=0 J=(0,1,0) K_x=0 L_x=1 L_y=0 M=(1,M_y,0) N=(1,0,0) ");
  19. print(AEFGAHMNBEIMBFJNCEKNCJLMDGKMDILNFHKLGHIJ);
  20. solve([+1+2*N_Y+2*N_Y*N_Y,+1*L_Y+2*L_Y*N_Y+1*N_Y*N_Y,-1+1*I_X-2*N_Y,-2+1*L_X+2*L_Y-1*N_Y,-1+1*K_Y-1*N_Y,+1*I_Y+1*N_Y,+1+1*B_Y+2*N_Y,+1+1*J_Y-1*L_Y+1*N_Y,+1*C_Y-1*L_Y-1*N_Y,-2+1*C_X+2*L_Y-1*N_Y,+1+1*H_Y+1*N_Y,-2+1*J_X+2*L_Y-1*N_Y,-1+1*B_X-2*N_Y,-1+1*E_X-2*N_Y],[L_Y,N_Y,I_X,L_X,K_Y,I_Y,B_Y,J_Y,C_Y,C_X,H_Y,J_X,B_X,E_X]);
  21. print("A=(1,0,0) D_x=0 D_y=1 E_y=0 F_x=1 F_y=0 G_x=0 G_y=0 H=(1,H_y,0) K_x=0 M=(0,1,0) N=(1,N_y,0) ");
  22. print(AEFGAHMNBEIMBFJNCEKNCGLMDILNDJKMFHKLGHIJ);
  23. solve([+1-1*L_X-1*L_X*L_Y-1*L_Y*L_Y,+1*L_X*L_X+1*L_Y+1*L_X*L_Y,+1*H_Y+1*L_X+1*L_Y,+1*K_Y+1*L_X+1*L_Y,+1+1*C_Y-1*L_X-1*L_Y,-1+1*D_Y+2*L_X+1*L_Y,+1*G_X-1*L_X-1*L_Y,-1+1*I_Y+1*L_X,-1+1*J_Y+1*L_X+1*L_Y,+1*I_X-1*L_X,-1+1*C_X,-1+1*K_X,+1+1*M_Y,+1*D_X-1*L_X],[L_X,L_Y,H_Y,K_Y,C_Y,D_Y,G_X,I_Y,J_Y,I_X,C_X,K_X,M_Y,D_X]);
  24. print("A=(1,0,0) B_x=0 B_y=1 E_x=1 E_y=0 F_x=0 F_y=0 G_y=0 H=(1,H_y,0) J_x=0 M=(1,M_y,0) N=(0,1,0) ");
  25. print(ADEFAGHNBDGIBJKNCELNCHJMDKLMEHIKFGJLFIMN);
  26. solve([+1+1*M_Y-1*K_Y*M_Y+2*M_Y*M_Y,+1*K_Y+1*M_Y*M_Y,-1+1*C_X-1*K_Y+1*M_Y,-1+1*B_X+1*K_Y,-1+1*H_X-1*M_Y,-1+1*K_X+1*K_Y-1*M_Y,-1+1*L_Y-1*M_Y,+1*B_Y-1*K_Y,-1+1*C_Y-1*M_Y,-1+1*E_Y-1*M_Y,+1+1*I_Y,+1*J_Y-1*K_Y,-1+1*J_X,-1+1*L_X],[K_Y,M_Y,C_X,B_X,H_X,K_X,L_Y,B_Y,C_Y,E_Y,I_Y,J_Y,J_X,L_X]);
  27. print("A_x=0 A_y=0 D_x=0 D_y=1 E_x=0 F=(0,1,0) G_x=1 G_y=0 H_y=0 I=(1,I_y,0) M=(1,M_y,0) N=(1,0,0) ");
  28. print(ACDEAFGHBCIJBFKLCGKMDFMNDHILEHJMEIKNGJLN);
  29. solve([+1-2*M_X+1*G_Y*M_X+2*M_X*M_X,+1*G_Y-1*M_X+1*M_X*M_X,+1*A_X*G_Y-1*G_Y*M_X-1*M_X*M_X,-2+1*B_Y+1*G_Y+2*M_X,+1+1*K_Y-1*M_X,+1+1*C_X-1*M_X,+2+1*B_X-1*G_Y-2*M_X,-1+1*D_Y+1*M_X,-1+1*F_Y+1*G_Y,-1+1*A_Y+1*M_X,+1*D_X-1*M_X,+1*F_X-1*M_X,+1+1*I_Y,-1+1*C_Y+1*M_X],[A_X,G_Y,M_X,B_Y,K_Y,C_X,B_X,D_Y,F_Y,A_Y,D_X,F_X,I_Y,C_Y]);
  30. print("E=(1,0,0) G_x=0 H_x=1 H_y=0 I=(1,I_y,0) J_x=0 J_y=0 K=(1,K_y,0) L_x=0 L_y=1 M_y=0 N=(0,1,0) ");
  31. print(ACDEAFGHBCIJBFKLCGKMDFMNDHILEGINEJLMHJKN);
  32. solve([+1-1*N_X-1*M_Y*N_X-1*N_Y+1*N_X*N_Y,+1*A_Y+1*D_Y*E_X-1*M_Y,+1*C_X-1*N_X+1*C_Y*N_X,+1*C_Y-1*M_Y+1*C_X*M_Y-1*C_Y*N_X-1*M_Y*N_X-1*C_X*N_Y+1*N_X*N_Y,+1*C_X*D_Y-1*D_Y*E_X+1*C_X*M_Y-1*C_Y*N_X-1*M_Y*N_X-1*C_X*N_Y+1*N_X*N_Y,+1*E_X+1*M_Y+1*E_X*M_Y-1*N_X-1*M_Y*N_X-1*N_Y-1*E_X*N_Y+1*N_X*N_Y,+1*M_X-1*N_X+1*M_Y*N_X,+1*D_Y*M_X-1*M_Y,+1*D_Y*N_X-1*N_Y,+1+1*I_Y+1*M_Y-1*N_Y,+1*J_Y-1*M_Y,+1*E_Y-1*M_Y,+1*K_X-1*N_X,+1*J_X-1*N_X],[A_Y,C_X,C_Y,D_Y,E_X,M_X,M_Y,N_X,N_Y,I_Y,J_Y,E_Y,K_X,J_X]);
  33. print("A_x=0 B_x=1 B_y=0 D=(1,D_y,0) F_x=0 F_y=0 G_x=0 G_y=1 H=(0,1,0) I=(1,I_y,0) K_y=0 L=(1,0,0) ");
  34. print(ACDEAFGHBCIJBFKLCFMNDGIKDHJMEHKNEILMGJLN);
  35. solve([+1-1*L_X-1*L_X*N_Y,+1*K_X-1/2*L_X-1/2*K_X*L_Y+1/2*L_X*L_Y,+1*L_Y-1*K_X*N_Y,+1*G_X+1*K_X-1*L_X,+1+1*J_Y-1*L_X-1*L_Y,+1+1*I_Y-1*L_Y,+1+1*B_X-1*L_X,-1+1*E_Y+1*L_X,+1+1*C_Y,+1*I_X-1*L_X,+1*E_X-1*L_X,+1*B_Y-1*L_Y,+1*K_Y-1*L_Y],[K_X,L_X,L_Y,N_Y,G_X,J_Y,I_Y,B_X,E_Y,C_Y,I_X,E_X,B_Y,K_Y]);
  36. print("A_x=1 A_y=0 C=(1,C_y,0) D_x=0 D_y=1 F=(1,0,0) G_y=0 H_x=0 H_y=0 J_x=0 M=(0,1,0) N=(1,N_y,0) ");
  37. print(ADEFAGHNBDIJBKLNCEGKCFINDGLMEJMNFHJLHIKM);
  38. solve([-2+1*L_Y,+3+1*L_X,+1/2+1*G_Y,+2/3+1*H_Y,+1+1*M_Y,-3+1*K_Y,-3/2+1*C_Y,-3+1*M_X,+2+1*J_Y,-3+1*E_X,+3+1*K_X,-3+1*J_X,-4+1*B_Y,+3+1*B_X],[L_Y,L_X,G_Y,H_Y,M_Y,K_Y,C_Y,M_X,J_Y,E_X,K_X,J_X,B_Y,B_X]);
  39. print("A=(1,0,0) C_x=0 D_x=1 D_y=0 E_y=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 I_y=1 N=(0,1,0) ");
  40. print(ADEFAGHNBDIJBKLNCEGKCFINDHKMEJMNFHJLGILM);
  41. solve([+2+1*L_Y,+3/4+1*G_Y,-4+1*L_X,+1/2+1*M_Y,-2+1*M_X,+3/2+1*K_Y,-3/2+1*C_Y,+1/2+1*H_Y,+1+1*J_Y,-2+1*E_X,+3+1*B_Y,-2+1*J_X,-4+1*B_X,-4+1*K_X],[L_Y,G_Y,L_X,M_Y,M_X,K_Y,C_Y,H_Y,J_Y,E_X,B_Y,J_X,B_X,K_X]);
  42. print("A=(1,0,0) C_x=0 D_x=1 D_y=0 E_y=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) I_x=0 I_y=1 N=(0,1,0) ");
  43. print(ADEFAGHIBDJKBELNCGLMCHJNDIMNEHKMFGKNFIJL);
  44. solve([+1+1*N_Y+1*N_Y*N_Y,-1+1*M_X-1*N_Y,-1+1*L_Y-2*N_Y,-2+1*H_X-1*N_Y,+1+1*M_Y,-4/3+1*C_X-2/3*N_Y,-1/3+1*B_X+1/3*N_Y,-1+1*G_Y-1*N_Y,+1*I_Y-1*N_Y,+1+1*E_Y+1*N_Y,+1*H_Y-1*N_Y,+1*C_Y-1*N_Y,-1+1*G_X,-1+1*N_X],[N_Y,M_X,L_Y,H_X,M_Y,C_X,B_X,G_Y,I_Y,E_Y,H_Y,C_Y,G_X,N_X]);
  45. print("A_x=0 A_y=1 B_y=0 D_x=0 D_y=0 E_x=0 F=(0,1,0) I=(1,I_y,0) J=(1,0,0) K_x=1 K_y=0 L=(1,L_y,0) ");
  46. print(ADEFAGHIBDJKBGLNCEJNCHLMDIMNEGKMFHKNFIJL);
  47. solve([-1/8+1*B_X,+1+1*C_Y,-1/2+1*K_Y,-2/3+1*G_Y,-2+1*L_Y,-1/4+1*K_X,-1/2+1*N_X,+2+1*F_Y,+1/4+1*J_X,-1/2+1*J_Y,+2/3+1*E_Y,+1+1*L_X,-2+1*C_X,-1/2+1*B_Y],[B_X,C_Y,K_Y,G_Y,L_Y,K_X,N_X,F_Y,J_X,J_Y,E_Y,L_X,C_X,B_Y]);
  48. print("A=(0,1,0) D=(1,0,0) E=(1,E_y,0) F=(1,F_y,0) G_x=0 H_x=0 H_y=1 I_x=0 I_y=0 M_x=1 M_y=0 N_y=0 ");
  49. print(ADEFAGHNBDIJBEKNCFINCGKLDLMNEGJMFHJLHIKM);
  50. solve([+1-1/2*L_Y+1/2*L_Y*L_Y,-1/2+1*I_X+1/4*L_Y,-2+1*B_Y,-1/2+1*J_X,-1+1*I_Y+1/2*L_Y,-1+1*K_Y+1*L_Y,-2+1*H_Y+1*L_Y,+1*C_Y-1/2*L_Y,-1+1*G_Y,-1+1*J_Y,-1+1*G_X,-1+1*H_X,-1/2+1*F_X+1/4*L_Y,-1/2+1*C_X+1/4*L_Y],[L_Y,I_X,B_Y,J_X,I_Y,K_Y,H_Y,C_Y,G_Y,J_Y,G_X,H_X,F_X,C_X]);
  51. print("A_x=1 A_y=0 B=(1,B_y,0) D_x=0 D_y=0 E=(1,0,0) F_y=0 K=(1,K_y,0) L_x=0 M_x=0 M_y=1 N=(0,1,0) ");
  52. print(ADEFAGHNBDIJBEKNCFINCGKLDLMNEHJLFGJMHIKM);
  53. solve([+1+1/2*I_Y*J_Y-1/3*M_Y-1/2*I_Y*M_Y+1/6*J_Y*M_Y,+1*I_Y-1/2*M_Y-1/2*I_Y*M_Y,+1*J_Y-1/3*M_Y-1/3*J_Y*M_Y,+1+1*B_Y,-1+1*M_X+1/2*M_Y,-1+1*J_X+1/2*J_Y,+1+1*C_Y,+1+1*H_Y-1*I_Y,+2+1*G_Y,+1+1*L_Y-1*M_Y,-1+1*I_X,-1+1*L_X+1/2*M_Y,-1+1*C_X,-1+1*D_X+1/2*M_Y],[I_Y,J_Y,M_Y,B_Y,M_X,J_X,C_Y,H_Y,G_Y,L_Y,I_X,L_X,C_X,D_X]);
  54. print("A=(1,0,0) B_x=0 D_y=0 E_x=0 E_y=0 F_x=1 F_y=0 G=(1,G_y,0) H=(1,H_y,0) K_x=0 K_y=1 N=(0,1,0) ");
  55. print(ADEFAGHIBDJKBGLNCEJNCHLMDIMNEIKLFGJMFHKN);
  56. solve([-1/3+1*C_Y,-1/2+1*K_Y,-1+1*E_Y,-2/3+1*L_Y,-2/3+1*L_X,-4/3+1*C_X,-3/4+1*B_X,-2+1*M_X,-3/2+1*J_X,-2+1*G_Y,-1/2+1*K_X,-1/2+1*B_Y,+1+1*F_Y,-1/2+1*J_Y],[C_Y,K_Y,E_Y,L_Y,L_X,C_X,B_X,M_X,J_X,G_Y,K_X,B_Y,F_Y,J_Y]);
  57. print("A=(0,1,0) D=(1,0,0) E=(1,E_y,0) F=(1,F_y,0) G_x=0 H_x=0 H_y=1 I_x=0 I_y=0 M_y=0 N_x=1 N_y=0 ");
  58. print(ABDEAFGNBHINCDJNCFKLDHKMEGIKELMNFIJMGHJL);
  59. solve([+1*L_Y-1*M_Y-1*L_Y*M_Y-1*M_Y*M_Y,+1*L_Y*L_Y+1*M_Y+1*L_Y*M_Y,-1+1*K_Y-1*L_Y-1*M_Y,+1*J_Y+1*M_Y,+1*C_Y-1*L_Y+2*M_Y,+1*K_X+1*L_Y+1*M_Y,-1+1*J_X-1*L_Y-1*M_Y,-1+1*H_Y-1*L_Y,+1+1*F_Y-1*M_Y,-1+1*L_X,-1+1*M_X,-1+1*C_X-1*L_Y-1*M_Y,+1+1*G_Y,-1+1*D_X-1*L_Y-1*M_Y],[L_Y,M_Y,K_Y,J_Y,C_Y,K_X,J_X,H_Y,F_Y,L_X,M_X,C_X,G_Y,D_X]);
  60. print("A=(1,0,0) B_x=0 B_y=0 D_y=0 E_x=1 E_y=0 F=(1,F_y,0) G=(1,G_y,0) H_x=0 I_x=0 I_y=1 N=(0,1,0) ");
  61. print(ACDEAFGHBCIJBDKLCFKMDGMNEGILEHJMFJLNHIKN);
  62. solve([+1+1*A_Y,+1+1*B_X,-4/3+1*A_X,-1/3+1*M_X,-3/2+1*L_Y,-3/2+1*K_Y,-2/3+1*E_X,-2+1*D_Y,-1/2+1*G_Y,-1/3+1*D_X,-1/3+1*G_X,+3/2+1*F_Y,-1+1*M_Y,-1+1*E_Y],[A_Y,B_X,A_X,M_X,L_Y,K_Y,E_X,D_Y,G_Y,D_X,G_X,F_Y,M_Y,E_Y]);
  63. print("B_y=0 C_x=1 C_y=0 F=(1,F_y,0) H_x=0 H_y=1 I_x=0 I_y=0 J=(1,0,0) K_x=0 L=(1,L_y,0) N=(0,1,0) ");
  64. print(ACDEAFGHBCIJBDKLCFKMDGMNEFINEGJLHILMHJKN);
  65. solve([+1-1*D_Y-1*D_X*F_Y,+1*A_Y-1*D_Y-1*D_X*F_Y-1*A_Y*M_X+1*F_Y*M_X,+1*B_Y+1*D_Y+1*D_X*F_Y-1*B_Y*M_X,+1*B_Y*D_X+1*D_X*F_Y-1*B_Y*M_X,+1*F_Y-1*F_Y*M_X-1*M_Y,+1*A_X*F_Y+1*A_Y*M_X-1*F_Y*M_X,+1*F_Y*G_X-1*F_Y*M_X+1*G_X*M_Y,+1*M_X-1*G_X*M_Y,+1*D_Y*M_X-1*D_X*M_Y,+1*C_Y+1*F_Y,-1+1*L_Y,-1+1*G_Y,+1*L_X-1*M_X,+1*H_X-1*M_X],[A_X,A_Y,B_Y,D_X,D_Y,F_Y,G_X,M_X,M_Y,C_Y,L_Y,G_Y,L_X,H_X]);
  66. print("B=(1,B_y,0) C=(1,C_y,0) E_x=0 E_y=1 F_x=0 H_y=0 I=(0,1,0) J=(1,0,0) K_x=1 K_y=0 N_x=0 N_y=0 ");
  67. print(ADEFAGHIBDJKBGLNCDMNCHJLEHKNEILMFGKMFIJN);
  68. solve([-9/10+1*C_Y,-1+1*B_X,-3/5+1*N_Y,+1/8+1*C_X,+1/2+1*N_X,-4/5+1*M_Y,-1/4+1*L_X,-6/5+1*J_Y,+2/5+1*K_Y,-3/5+1*L_Y,-2/5+1*E_Y,-3/5+1*B_Y,+1/2+1*J_X,+1/2+1*I_X],[C_Y,B_X,N_Y,C_X,N_X,M_Y,L_X,J_Y,K_Y,L_Y,E_Y,B_Y,J_X,I_X]);
  69. print("A_x=0 A_y=0 D_x=0 D_y=1 E_x=0 F=(0,1,0) G=(1,0,0) H_x=1 H_y=0 I_y=0 K=(1,K_y,0) M=(1,M_y,0) ");
  70. print(ABEMAFGNBHINCFHJCKMNDELNDIJMEGJKFIKLGHLM);
  71. solve([+1-1*J_Y+1/3*J_Y*J_Y,+1*D_Y+1/2*J_Y-1/2*D_Y*J_Y-1/2*J_Y*J_Y,+3+1*I_Y-2*J_Y,-2+1*I_X+1*J_Y,+2+1*H_Y-1*J_Y,-1+1*J_X+1*J_Y,-2+1*C_Y+1*J_Y,+2+1*F_Y,+1+1*L_Y,-1+1*L_X,-2+1*H_X+1*J_Y,-1+1*D_X,-2+1*B_X+1*J_Y,+1+1*G_Y],[D_Y,J_Y,I_Y,I_X,H_Y,J_X,C_Y,F_Y,L_Y,L_X,H_X,D_X,B_X,G_Y]);
  72. print("A=(1,0,0) B_y=0 C_x=0 E_x=1 E_y=0 F=(1,F_y,0) G=(1,G_y,0) K_x=0 K_y=1 M_x=0 M_y=0 N=(0,1,0) ");
  73. print(ABDEAFGNBHINCFHJCKLNDFKMDIJLEGIKEJMNGHLM);
  74. solve([+1+1*L_Y-1*L_Y*L_Y,-2+1*H_X,-2+1*L_X+1*L_Y,+1+1*M_Y,+1*F_X-1*L_Y,+1+1*J_Y+1*L_Y,-3+1*C_X+1*L_Y,-1+1*F_Y,-1+1*D_Y-1*L_Y,-1+1*G_Y,-1+1*G_X,-1+1*K_X,+1*C_Y-1*L_Y,+1*K_Y-1*L_Y],[L_Y,H_X,L_X,M_Y,F_X,J_Y,C_X,F_Y,D_Y,G_Y,G_X,K_X,C_Y,K_Y]);
  75. print("A_x=0 A_y=1 B_x=0 B_y=0 D_x=0 E=(0,1,0) H_y=0 I_x=1 I_y=0 J=(1,J_y,0) M=(1,M_y,0) N=(1,0,0) ");
  76. print(AEFGAHIMBEMNBHJKCFJNCGLMDFKMDHLNEIJLGIKN);
  77. solve([+1+1*K_Y-1*K_Y*K_Y,-1+1*B_Y+1*K_Y,+1+1*C_X-1*K_Y,-2+1*D_X+1*K_Y,-2+1*H_X,+1+1*J_Y-1*K_Y,-1+1*K_X+1*K_Y,+1*D_Y-1*K_Y,-1+1*L_Y,-1+1*C_Y,-1+1*J_X,-1+1*L_X,+1+1*N_Y,+1*F_Y-1*K_Y],[K_Y,B_Y,C_X,D_X,H_X,J_Y,K_X,D_Y,L_Y,C_Y,J_X,L_X,N_Y,F_Y]);
  78. print("A_x=0 A_y=0 B=(1,B_y,0) E=(0,1,0) F_x=0 G_x=0 G_y=1 H_y=0 I_x=1 I_y=0 M=(1,0,0) N=(1,N_y,0) ");
  79. print(AEFGAHIMBEMNBHJKCFJNCGKMDFLMDIKNEIJLGHLN);
  80. solve([+1-2*N_Y+1/2*N_Y*N_Y,-1+1*K_X+1/2*N_Y,+2+1*L_Y-3*N_Y,-2+1*J_X+1/2*N_Y,+1+1*J_Y-1*N_Y,+1+1*C_Y-2*N_Y,+2+1*H_Y-2*N_Y,+2+1*I_Y-3*N_Y,+2+1*D_Y-4*N_Y,-1+1*K_Y+1*N_Y,-1+1*C_X+1/2*N_Y,-1+1*L_X,-1+1*G_X+1/2*N_Y,-1+1*D_X],[N_Y,K_X,L_Y,J_X,J_Y,C_Y,H_Y,I_Y,D_Y,K_Y,C_X,L_X,G_X,D_X]);
  81. print("A=(1,0,0) B_x=0 B_y=1 E_x=0 E_y=0 F_x=1 F_y=0 G_y=0 H=(1,H_y,0) I=(1,I_y,0) M=(0,1,0) N_x=0 ");
  82. print(ABLMAFGNBHINCDLNCFJMDHKMEGIMEJKNFIKLGHJL);
  83. solve([+1-3*N_Y+3*N_Y*N_Y,+2+1*E_X-3*N_Y,+1+1*K_Y-3*N_Y,+1+1*B_Y-1*N_Y,-2+1*H_X+3*N_Y,+1+1*I_X,-1+1*K_X+3*N_Y,+1*C_X-1*N_Y,-1+1*D_X+2*N_Y,-1+1*I_Y,+1+1*H_Y-3*N_Y,-1+1*E_Y,+1+1*L_Y,+1+1*D_Y-3*N_Y],[N_Y,E_X,K_Y,B_Y,H_X,I_X,K_X,C_X,D_X,I_Y,H_Y,E_Y,L_Y,D_Y]);
  84. print("A=(0,1,0) B=(1,B_y,0) C_y=0 F_x=0 F_y=0 G_x=0 G_y=1 J_x=1 J_y=0 L=(1,L_y,0) M=(1,0,0) N_x=0 ");
  85. print(ACDEAFGHBCIJBDKLCFKMDGINEFLNEGJMHILMHJKN);
  86. solve([+1-3*N_X+1*N_X*N_X,+1*B_Y-1*N_X,+1*B_X-1*N_X,+1+1*A_X,-1+1*K_Y+1*N_X,+2+1*J_Y-1*N_X,+1+1*D_X-1*N_X,+1+1*H_Y,+1+1*G_Y,+1+1*I_Y-1*N_X,-1+1*I_X,-1+1*H_X,-1+1*A_Y,-1+1*D_Y],[N_X,B_Y,B_X,A_X,K_Y,J_Y,D_X,H_Y,G_Y,I_Y,I_X,H_X,A_Y,D_Y]);
  87. print("C_x=0 C_y=1 E=(1,0,0) F_x=0 F_y=0 G=(1,G_y,0) J=(1,J_y,0) K_x=0 L_x=1 L_y=0 M=(0,1,0) N_y=0 ");
  88. print(ACDEAFGHBCIJBDKLCFKMDGINEFLNEHIMGJLMHJKN);
  89. solve([+1+1*M_Y*N_X,+1*B_X-1*B_X*I_Y+1*B_X*M_Y+1*B_Y*N_X+1*I_Y*N_X,+1*B_Y-1*B_X*I_Y+1*M_Y*N_X,+1*I_Y-1*I_Y*N_X+1*N_Y,+1*K_X+1*I_Y*N_X-1*N_Y+1*N_X*N_Y,+1*I_Y*K_X-1*M_Y*N_X-2*N_Y,+1*K_X*M_Y-1*M_Y*N_X-1*N_Y,-1+1*J_X-1*K_X+1*N_X,+1+1*L_Y+1*M_Y,+1*L_X-1*N_X,+1*F_X-1*N_X,+1*D_Y+1*I_Y,+1*K_Y-1*N_Y,+1*J_Y-1*N_Y],[B_X,B_Y,I_Y,K_X,M_Y,N_X,N_Y,J_X,L_Y,L_X,F_X,D_Y,K_Y,J_Y]);
  90. print("A_x=0 A_y=0 C_x=0 C_y=1 D_x=0 E=(0,1,0) F_y=0 G_x=1 G_y=0 H=(1,0,0) I=(1,I_y,0) M=(1,M_y,0) ");
  91. print(ABDEAFGNBHINCFJKCHLMDGHJDKLNEFILEJMNGIKM);
  92. solve([+1-3*M_X+1*M_X*M_X,+1*C_Y+5/3*M_X-1/3*C_Y*M_X-2/3*M_X*M_X,-2+1*C_X-1*C_Y,+2+1*L_Y-1*M_X,+5+1*K_Y-2*M_X,-1+1*I_X+1*M_X,+2+1*G_Y-1*M_X,-2+1*F_X+1*M_X,-1+1*J_X,-1+1*G_X,-1+1*J_Y,-1+1*M_Y,+2+1*F_Y-1*M_X,+2+1*A_Y-1*M_X],[C_Y,M_X,C_X,L_Y,K_Y,I_X,G_Y,F_X,J_X,G_X,J_Y,M_Y,F_Y,A_Y]);
  93. print("A_x=0 B_x=0 B_y=0 D=(0,1,0) E_x=0 E_y=1 H_x=1 H_y=0 I_y=0 K=(1,K_y,0) L=(1,L_y,0) N=(1,0,0) ");
  94. print(ADEFAGHNBDIJBEKNCDLNCGKMEHIMFGILFJMNHJKL);
  95. solve([+1-1*I_X*L_Y+1*K_X*L_Y,+1*I_X+1*I_X*K_Y-1*I_X*L_Y+1*K_X*L_Y,+1*K_X+1*K_X*K_Y-1*I_X*L_Y,+1*K_Y-1*I_X*L_Y,+1*I_Y-1*K_Y,-1+1*B_Y,-1+1*C_Y-1*L_Y,-1+1*J_Y-1*K_Y,+1*G_Y-1*L_Y,+1+1*H_Y+1*K_Y-1*L_Y,+1*B_X-1*K_X,-1+1*L_X,-1+1*C_X,+1*E_X-1*K_X],[I_X,K_X,K_Y,L_Y,I_Y,B_Y,C_Y,J_Y,G_Y,H_Y,B_X,L_X,C_X,E_X]);
  96. print("A=(1,0,0) D_x=1 D_y=0 E_y=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) J_x=0 M_x=0 M_y=1 N=(0,1,0) ");
  97. print(ADENAFGHBDIJBFKNCEKLCGINDFLMEHIMGJKMHJLN);
  98. solve([+1-1*L_X*M_X-1*M_Y,+1*L_X-1*M_X*M_X-1*M_Y-1*L_X*M_Y,+1*I_Y*L_X+1*L_X*M_X-1*M_X*M_X-1*L_X*M_Y,+1*M_X-1*M_X*M_X-1*M_Y,+1*K_Y+1*M_X,+1+1*J_Y-1*M_X-1*M_Y,-1+1*C_Y+1*M_X,+1*B_Y-1*I_Y+1*M_Y,+1*L_Y-1*M_Y,-1+1*C_X,+1*D_Y-1*M_Y,-1+1*I_X,+1*J_X-1*L_X,+1*H_X-1*L_X],[I_Y,L_X,M_X,M_Y,K_Y,J_Y,C_Y,B_Y,L_Y,C_X,D_Y,I_X,J_X,H_X]);
  99. print("A_x=0 A_y=0 B=(1,B_y,0) D_x=0 E_x=0 E_y=1 F=(1,0,0) G_x=1 G_y=0 H_y=0 K=(1,K_y,0) N=(0,1,0) ");
  100. print(ADEFAGHNBDGIBJKNCEHJCFLNDJLMEIMNFGKMHIKL);
  101. solve([+1-1*H_Y-2*N_Y+1*H_Y*N_Y,+1*A_X+1*N_Y-1*A_X*N_Y,+1*B_X-1*H_Y-1*N_Y-2*B_X*N_Y+1*H_Y*N_Y,+1*C_Y-1*N_Y-1*C_Y*N_Y+2*N_Y*N_Y,+1*A_X*H_Y+2*N_Y-1*A_X*N_Y-1*H_Y*N_Y,+1*C_X+1*C_Y-2*N_Y,-2+1*H_X+1*H_Y,-1+1*J_Y+2*N_Y,-1+1*K_Y+1*N_Y,-1+1*G_Y,-1+1*G_X,-1+1*K_X,+1*L_Y+1*N_Y,-1+1*B_Y],[A_X,B_X,C_Y,H_Y,N_Y,C_X,H_X,J_Y,K_Y,G_Y,G_X,K_X,L_Y,B_Y]);
  102. print("A_y=0 D=(1,0,0) E_x=0 E_y=0 F_x=1 F_y=0 I_x=0 I_y=1 J=(1,J_y,0) L=(1,L_y,0) M=(0,1,0) N_x=0 ");
  103. print(ABDEAFGNBHINCDFJCKLNDHKMEGHLEJMNFILMGIJK);
  104. solve([+3/5+1*L_Y,-1/5+1*M_Y,-4/3+1*L_X,-2/3+1*M_X,+1/5+1*K_Y,+9/10+1*G_Y,+2/5+1*C_Y,-2/5+1*J_Y,+6/5+1*F_Y,-3/5+1*H_Y,-4/3+1*K_X,-2/3+1*J_X,-4/3+1*C_X,-2/3+1*E_X],[L_Y,M_Y,L_X,M_X,K_Y,G_Y,C_Y,J_Y,F_Y,H_Y,K_X,J_X,C_X,E_X]);
  105. print("A=(1,0,0) B_x=0 B_y=0 D_x=1 D_y=0 E_y=0 F=(1,F_y,0) G=(1,G_y,0) H_x=0 I_x=0 I_y=1 N=(0,1,0) ");
  106. print(ABDEAFGNBHINCDFJCKLNDHKMEGIKEJMNFILMGHJL);
  107. solve([+5+1*L_Y,+1+1*M_Y,-4+1*L_X,+3/2+1*G_Y,+2+1*J_Y,+6+1*C_Y,-3+1*I_Y,+2+1*F_Y,-2+1*J_X,-2+1*E_X,-2+1*M_X,+3+1*K_Y,-4+1*C_X,-4+1*K_X],[L_Y,M_Y,L_X,G_Y,J_Y,C_Y,I_Y,F_Y,J_X,E_X,M_X,K_Y,C_X,K_X]);
  108. print("A=(1,0,0) B_x=0 B_y=0 D_x=1 D_y=0 E_y=0 F=(1,F_y,0) G=(1,G_y,0) H_x=0 H_y=1 I_x=0 N=(0,1,0) ");
  109. print(ADEFAGHIBDJKBELNCGJLCHKNDGMNEIKMFHLMFIJN);
  110. solve([+1+1*M_Y+1/3*M_Y*M_Y,+2+1*K_X+1*M_Y,-3+1*K_Y-1*M_Y,-1+1*G_Y-1*M_Y,+1+1*I_X,+1+1*H_X+1*M_Y,+2+1*C_X+2*M_Y,-3+1*C_Y-1*M_Y,-3+1*H_Y-1*M_Y,+2+1*J_X+1*M_Y,+1*J_Y+1*M_Y,+2+1*B_X+1*M_Y,+1*I_Y+1*M_Y,+1*F_Y+1*M_Y],[M_Y,K_X,K_Y,G_Y,I_X,H_X,C_X,C_Y,H_Y,J_X,J_Y,B_X,I_Y,F_Y]);
  111. print("A_x=0 A_y=1 B_y=0 D=(0,1,0) E_x=0 E_y=0 F_x=0 G=(1,G_y,0) L_x=1 L_y=0 M=(1,M_y,0) N=(1,0,0) ");
  112. print(ABCDAEFGBHIJCEHKCILMDELNDFJMFIKNGHMNGJKL);
  113. solve([+1-1*M_Y+1/2*M_Y*M_Y,+2+1*B_X-1*M_Y,+1*K_X+1*M_Y,-1+1*K_Y+1*M_Y,+1+1*H_X,-2+1*F_Y+1*M_Y,-2+1*J_Y+2*M_Y,-1+1*F_X+1*M_Y,-1+1*I_Y,-3+1*G_Y+2*M_Y,-1+1*H_Y+1*M_Y,-1+1*E_Y+1*M_Y,+1*J_X+1*M_Y,+1*G_X+1*M_Y],[M_Y,B_X,K_X,K_Y,H_X,F_Y,J_Y,F_X,I_Y,G_Y,H_Y,E_Y,J_X,G_X]);
  114. print("A_x=1 A_y=0 B_y=0 C=(1,0,0) D_x=0 D_y=0 E_x=0 I=(1,I_y,0) L=(0,1,0) M=(1,M_y,0) N_x=0 N_y=1 ");
  115. print(ABDEAFGHBIJNCFKNCILMDFJLDGMNEGIKEHLNHJKM);
  116. solve([+1+1*N_Y+1*J_X*N_Y-1*M_X*N_Y,+1*C_X-1*C_X*M_Y-2*N_Y+1*C_X*N_Y+2*J_X*N_Y,+1*C_Y+2*N_Y-1*C_X*N_Y-1*M_X*N_Y,+1*J_X-1*J_X*M_Y+1*M_X*N_Y,+1*M_X-1*M_X*M_Y-1*N_Y+2*J_X*N_Y,+1*M_Y+1*N_Y-1*M_X*N_Y,+1+1*L_Y-1*M_Y,-2+1*F_X+1*M_X,-1+1*I_Y-1*N_Y,+1*D_Y+1*N_Y,-1+1*I_X,-1+1*K_X,+1*J_Y-1*M_Y,+1*K_Y-1*M_Y],[C_X,C_Y,J_X,M_X,M_Y,N_Y,L_Y,F_X,I_Y,D_Y,I_X,K_X,J_Y,K_Y]);
  117. print("A_x=0 A_y=0 B_x=0 B_y=1 D_x=0 E=(0,1,0) F_y=0 G_x=1 G_y=0 H=(1,0,0) L=(1,L_y,0) N=(1,N_y,0) ");
  118. print(ABEMAFGNBHINCEFJCKMNDGHMDJLNEHKLFILMGIJK);
  119. solve([-3/2+1*H_X,+2+1*K_Y,-1/2+1*J_X,-2+1*L_Y,-4+1*E_Y,-3/2+1*G_X,-2+1*D_Y,-2+1*J_Y,+4+1*C_Y,-3/2+1*D_X,-1+1*I_X,-1+1*L_X,-1+1*H_Y,-1+1*I_Y],[H_X,K_Y,J_X,L_Y,E_Y,G_X,D_Y,J_Y,C_Y,D_X,I_X,L_X,H_Y,I_Y]);
  120. print("A_x=0 A_y=0 B_x=0 B_y=1 C=(1,C_y,0) E_x=0 F_x=1 F_y=0 G_y=0 K=(1,K_y,0) M=(0,1,0) N=(1,0,0) ");
  121. print(ABEMAFGNBHINCFJKCHLMDFILDJMNEGHJEKLNGIKM);
  122. solve([+1-1/2*B_Y*I_X,+1*B_Y-1*L_Y-1/2*B_Y*L_Y,+1*I_X-1/2*L_Y-1*I_X*L_Y,+1*D_X+1*I_X,+1*L_X+1/2*L_Y,-2+1*K_Y,-1+1*H_X+1/2*L_Y,+1+1*K_X,+2+1*E_Y,-1+1*C_X+1*L_Y,+1*C_Y-1*L_Y,+1*H_Y-1*L_Y,-2+1*I_Y,-2+1*G_Y],[B_Y,I_X,L_Y,D_X,L_X,K_Y,H_X,K_X,E_Y,C_X,C_Y,H_Y,I_Y,G_Y]);
  123. print("A=(0,1,0) B=(1,B_y,0) D_y=0 E=(1,E_y,0) F_x=0 F_y=1 G_x=0 J_x=1 J_y=0 M=(1,0,0) N_x=0 N_y=0 ");
  124. print(ABLMAFGNBHINCFJLCHKMDGHLDJMNEFIMEKLNGIJK);
  125. solve([+1+3*K_Y+1*K_Y*K_Y,+1*C_X+4*K_Y+1*C_X*K_Y-1*C_Y*K_Y+2*K_Y*K_Y,+1*C_Y-2*K_Y+1*C_Y*K_Y-1*K_Y*K_Y,+1+1*I_Y,+1+1*E_Y+1*K_Y,-2+1*I_X-1*K_Y,-1+1*J_Y-1*K_Y,+1+1*H_Y+1*K_Y,-2+1*H_X-1*K_Y,+1+1*F_Y+1*K_Y,-1+1*K_X,-1+1*E_X,+1+1*G_Y,-2+1*B_X-1*K_Y],[C_X,C_Y,K_Y,I_Y,E_Y,I_X,J_Y,H_Y,H_X,F_Y,K_X,E_X,G_Y,B_X]);
  126. print("A=(1,0,0) B_y=0 D_x=0 D_y=1 F=(1,F_y,0) G=(1,G_y,0) J_x=0 L_x=1 L_y=0 M_x=0 M_y=0 N=(0,1,0) ");
  127. print(ABEMACFNBGHNCIJMDGIKDLMNEHILEJKNFGJLFHKM);
  128. solve([+1-1*L_Y+1*L_Y*L_Y,+1*K_X-1*L_Y,+1+1*D_Y-1*L_Y,-1+1*G_X-1*L_Y,+1*H_Y-1*L_Y,-1+1*I_Y-1*L_Y,+1*G_Y-1*L_Y,+1*B_Y-1*L_Y,-1+1*J_Y,-1+1*K_Y,-1+1*I_X,-1+1*J_X,+1*H_X-1*L_Y,+1*F_X-1*L_Y],[L_Y,K_X,D_Y,G_X,H_Y,I_Y,G_Y,B_Y,J_Y,K_Y,I_X,J_X,H_X,F_X]);
  129. print("A_x=0 A_y=0 B_x=0 C_x=1 C_y=0 D=(1,D_y,0) E_x=0 E_y=1 F_y=0 L=(1,L_y,0) M=(0,1,0) N=(1,0,0) ");
  130. print(ADEFAGHNBDGIBJKNCDLNCEJMEHIKFHJLFIMNGKLM);
  131. solve([+1-1*M_Y+1*G_X*M_Y,+1*K_Y+1*G_X*M_Y-1*K_X*M_Y,+1*B_X*K_Y-1*M_Y-1*B_X*M_Y+1*K_X*M_Y,+1*G_X*K_Y-1*M_Y,+1*K_X*K_Y+1*M_Y-1*K_X*M_Y,-2+1*C_X+1*K_X,+1*I_Y+1*K_Y-1*M_Y,+1*J_Y-1*K_Y,+1*E_Y-1*K_Y+1*M_Y,+1*B_Y-1*K_Y,-1+1*J_X,-1+1*L_X,-1+1*C_Y,-1+1*L_Y],[B_X,G_X,K_X,K_Y,M_Y,C_X,I_Y,J_Y,E_Y,B_Y,J_X,L_X,C_Y,L_Y]);
  132. print("A_x=0 A_y=0 D_x=0 D_y=1 E_x=0 F=(0,1,0) G_y=0 H_x=1 H_y=0 I=(1,I_y,0) M=(1,M_y,0) N=(1,0,0) ");
  133. print(ADEFAGHNBDIJBEKNCDGLCIMNEHJMFGKMFJLNHIKL);
  134. solve([+1-3*M_Y+1*D_Y*M_Y+1*M_Y*M_Y,+1*D_Y-3*M_Y+2*D_Y*M_Y+1*M_Y*M_Y,+1*C_X*D_Y-2*M_Y+2*D_Y*M_Y+1*M_Y*M_Y,-2+1*B_Y+1*D_Y+1*M_Y,-1+1*I_X+2*M_Y,+1*L_X+1*M_Y,-1+1*M_X+1*M_Y,-1+1*J_X+1*M_Y,+1+1*K_Y,-1+1*H_X+1*M_Y,-1+1*J_Y,-1+1*L_Y,+1*I_Y-1*M_Y,+1*C_Y-1*M_Y],[C_X,D_Y,M_Y,B_Y,I_X,L_X,M_X,J_X,K_Y,H_X,J_Y,L_Y,I_Y,C_Y]);
  135. print("A_x=0 A_y=0 B=(1,B_y,0) D_x=0 E=(0,1,0) F_x=0 F_y=1 G_x=1 G_y=0 H_y=0 K=(1,K_y,0) N=(1,0,0) ");
  136. print(ADEFAGHNBDIJBEKNCDGLCIMNEHLMFHIKFJLNGJKM);
  137. solve([+1-1*M_X+1*K_Y*M_X,+1*D_Y-1*D_Y*E_X-1*K_Y,+1*B_X*D_Y-1*D_Y*M_X+1*K_Y*M_X,+1*E_X-1*K_Y-1*E_X*K_Y,+1*I_X+1*K_Y-1*I_X*K_Y-2*M_X+2*K_Y*M_X,+1*D_Y*I_X+1*M_X-1*D_Y*M_X,-1+1*H_Y+1*K_Y,-1+1*M_Y,+1*A_Y+1*D_Y,-1+1*I_Y,+1*B_Y-1*K_Y,+1*E_Y-1*K_Y,+1*K_X-1*M_X,+1*J_X-1*M_X],[B_X,D_Y,E_X,I_X,K_Y,M_X,H_Y,M_Y,A_Y,I_Y,B_Y,E_Y,K_X,J_X]);
  138. print("A=(1,A_y,0) C_x=0 C_y=1 D_x=0 F_x=1 F_y=0 G=(0,1,0) H=(1,H_y,0) J_y=0 L_x=0 L_y=0 N=(1,0,0) ");
  139. print(ADEFAGHNBDIJBEKNCFGKCILNDGLMEHIMFJMNHJKL);
  140. solve([+1+1*J_X*L_Y-1*J_X*M_Y,+1*J_X+1*M_Y-1*J_X*M_Y,+1*K_Y+1*L_Y+1*K_Y*L_Y-1*K_Y*M_Y,+1*J_X*K_Y+1*L_Y+1*K_Y*L_Y-1*M_Y-1*K_Y*M_Y,+1*L_X+1*L_Y-1*M_Y,-1+1*G_X+1*J_X,+1*C_X+1*J_X+1*L_Y-1*M_Y,+1+1*B_Y-1*L_Y,-1+1*I_X,-1+1*M_X,+1*J_Y-1*M_Y,+1*F_Y-1*M_Y,+1*C_Y-1*L_Y,+1*I_Y-1*L_Y],[J_X,K_Y,L_Y,M_Y,L_X,G_X,C_X,B_Y,I_X,M_X,J_Y,F_Y,C_Y,I_Y]);
  141. print("A_x=0 A_y=0 B=(1,B_y,0) D_x=0 D_y=1 E=(0,1,0) F_x=0 G_y=0 H_x=1 H_y=0 K=(1,K_y,0) N=(1,0,0) ");
  142. print(ADEFAGHNBDIJBEKNCFGKCILNDGLMEHJLFJMNHIKM);
  143. solve([+1+1*L_Y*M_Y-1*M_Y*M_Y,+1*I_Y-1*B_Y*L_Y+1*I_Y*M_Y,+1*L_Y-1*M_Y+1*I_Y*M_Y-1*J_Y*M_Y-1*L_Y*M_Y+1*M_Y*M_Y,+1*I_Y*L_Y-1*L_Y*L_Y-1*J_Y*M_Y+1*M_Y*M_Y,+1*J_Y*L_Y-1*I_Y*M_Y,+1+1*H_Y+1*L_Y-1*M_Y,-1+1*B_X+1*B_Y,+1*I_X+1*I_Y-1*L_Y+1*M_Y,+1*J_X+1*J_Y,+1*C_Y-1*L_Y+1*M_Y,+1*M_X+1*M_Y,+1*L_X+1*M_Y,+1+1*N_Y,+1*D_X+1*M_Y],[B_Y,I_Y,J_Y,L_Y,M_Y,H_Y,B_X,I_X,J_X,C_Y,M_X,L_X,N_Y,D_X]);
  144. print("A=(1,0,0) C_x=0 D_y=0 E_x=1 E_y=0 F_x=0 F_y=0 G=(0,1,0) H=(1,H_y,0) K_x=0 K_y=1 N=(1,N_y,0) ");
  145. print(ABEFAGHMBIMNCEJNCFKMDGKNDJLMEGILFHLNHIJK);
  146. solve([+1-1*I_X*K_Y+1*J_X*K_Y-1*L_Y,+1*E_Y+1*J_X-1*E_Y*J_X-1*L_Y,+1*I_X-2*I_X*K_Y+2*J_X*K_Y+2*L_Y-2*I_X*L_Y,+1*E_Y*I_X+1*J_X-1*E_Y*J_X+1*L_Y-1*I_X*L_Y,+1*K_Y-1*J_X*K_Y+1*L_Y,-1+1*D_X+1*I_X-1*J_X,-2+1*G_X+1*I_X,-1+1*C_Y+1*E_Y,-1+1*N_Y,-1+1*I_Y,-1+1*N_X,-1+1*L_X,+1*J_Y-1*L_Y,+1*D_Y-1*L_Y],[E_Y,I_X,J_X,K_Y,L_Y,D_X,G_X,C_Y,N_Y,I_Y,N_X,L_X,J_Y,D_Y]);
  147. print("A_x=0 A_y=0 B_x=0 B_y=1 C=(1,C_y,0) E_x=0 F=(0,1,0) G_y=0 H_x=1 H_y=0 K=(1,K_y,0) M=(1,0,0) ");
  148. print(ABEMAFGNBHINCFHJCKLNDEGKDJMNEIJLFIKMGHLM);
  149. solve([+5+1*C_X,+1/3+1*J_Y,+2+1*L_X,-2+1*L_Y,-2/3+1*D_Y,-4/3+1*E_Y,-1+1*H_Y,-2+1*C_Y,-2+1*K_Y,-1+1*I_Y,-1+1*K_X,-1+1*I_X,+2+1*H_X,+2+1*G_X],[C_X,J_Y,L_X,L_Y,D_Y,E_Y,H_Y,C_Y,K_Y,I_Y,K_X,I_X,H_X,G_X]);
  150. print("A_x=0 A_y=0 B_x=0 B_y=1 D=(1,D_y,0) E_x=0 F_x=1 F_y=0 G_y=0 J=(1,J_y,0) M=(0,1,0) N=(1,0,0) ");
  151. print(ACDEAFGHBCFIBDJKCGLMDHLNEGJNEIKLFKMNHIJM);
  152. solve([+1-2*N_Y*N_Y,+1*M_X+2*N_Y,+1*B_Y-1*N_Y,-2+1*K_X,-1+1*D_Y,-2+1*E_X-2*N_Y,+1+1*J_Y,+1+1*A_Y,-1+1*K_Y-2*N_Y,-1+1*E_Y-2*N_Y,-1+1*I_Y-2*N_Y,-1+1*B_X+1*N_Y,+1*I_X+2*N_Y,+1*J_X+2*N_Y],[N_Y,M_X,B_Y,K_X,D_Y,E_X,J_Y,A_Y,K_Y,E_Y,I_Y,B_X,I_X,J_X]);
  153. print("A_x=0 C_x=1 C_y=0 D=(1,D_y,0) F_x=0 F_y=1 G_x=0 G_y=0 H=(0,1,0) L=(1,0,0) M_y=0 N=(1,N_y,0) ");
  154. print(ACDEAFGHBCFIBDJKCGLMDHLNEHJMEIKLFKMNGIJN);
  155. solve([+1+1*C_X*L_Y-1*E_X*L_Y,+1*A_X+1/2*A_X*I_Y+2*C_X*L_Y-1*E_X*L_Y-1*J_X*L_Y,+1*C_X+1/2*C_X*I_Y+1*C_X*L_Y-1/2*E_X*L_Y-1/2*J_X*L_Y,+1*E_X+1/2*E_X*I_Y+1*C_X*L_Y,+1*E_Y-1*E_X*L_Y,+1*I_Y-1*J_X*L_Y,+1*J_X+1/2*I_Y*J_X+1*C_X*L_Y-1*E_X*L_Y,+1+1*H_Y+1/2*I_Y,-2+1*F_Y-1*I_Y,-1+1*G_Y-1*I_Y,+1*A_Y-1*E_Y,+1*C_Y-1*E_Y,+1*I_X-1*J_X,+1*G_X-1*J_X],[A_X,C_X,E_X,E_Y,I_Y,J_X,L_Y,H_Y,F_Y,G_Y,A_Y,C_Y,I_X,G_X]);
  156. print("B_x=1 B_y=0 D=(1,0,0) F_x=0 H=(1,H_y,0) J_y=0 K_x=0 K_y=0 L=(1,L_y,0) M_x=0 M_y=1 N=(0,1,0) ");
  157. print(ABDEAFGNBHINCDFJCHKLDKMNEGIKEJLNFILMGHJM);
  158. solve([+1-1*L_X+1*L_X*L_Y,+1*C_X-1*L_X+1/2*L_Y-1*C_X*L_Y+1*L_X*L_Y,+1*I_Y-1*C_X*I_Y+1*L_X-1/2*L_Y+1*C_X*L_Y-1*L_X*L_Y,+1*I_Y*L_X-1*L_Y-1*L_X*L_Y,+1*C_Y-1*I_Y,+1+1*H_Y-1*I_Y-1*L_Y,+2+1*G_Y-1*I_Y-1*L_Y,+1+1*F_Y-1*I_Y,-2+1*K_Y+1*L_Y,+1+1*J_Y-1*L_Y,+1*J_X-1*L_X,-1+1*I_X,+1*E_X-1*L_X,-1+1*H_X],[C_X,I_Y,L_X,L_Y,C_Y,H_Y,G_Y,F_Y,K_Y,J_Y,J_X,I_X,E_X,H_X]);
  159. print("A=(1,0,0) B_x=1 B_y=0 D_x=0 D_y=0 E_y=0 F=(1,F_y,0) G=(1,G_y,0) K_x=0 M_x=0 M_y=1 N=(0,1,0) ");
  160. print(ABFLAGHMBIMNCDLMCFJNDGKNEHLNEJKMFHIKGIJL);
  161. solve([+1/4+1*E_Y,-3+1*M_X,+1/2+1*N_Y,+1+1*K_X,+1+1*D_Y,-1/2+1*J_Y,+1/2+1*C_Y,-3/2+1*B_Y,-3+1*C_X,-3+1*D_X,-1+1*I_Y,-1+1*K_Y,-1+1*I_X,-1+1*J_X],[E_Y,M_X,N_Y,K_X,D_Y,J_Y,C_Y,B_Y,C_X,D_X,I_Y,K_Y,I_X,J_X]);
  162. print("A_x=0 A_y=0 B_x=0 E=(1,E_y,0) F_x=0 F_y=1 G_x=1 G_y=0 H=(1,0,0) L=(0,1,0) M_y=0 N=(1,N_y,0) ");
  163. print(ABEMAFGHBIJNCFMNCIKLDGIMDHKNEFJKEGLNHJLM);
  164. solve([+1-1*L_Y-1*L_Y*L_Y,+1+1*C_Y-1*L_Y,+1*D_Y+1*L_Y,+1*K_X+1*L_Y,-1+1*I_Y+1*L_Y,-2+1*B_Y+1*L_Y,-1+1*L_X+1*L_Y,-1+1*I_X,-1+1*J_Y,-1+1*K_Y,+1+1*N_Y,-1+1*D_X,-1+1*J_X+1*L_Y,-1+1*H_X+1*L_Y],[L_Y,C_Y,D_Y,K_X,I_Y,B_Y,L_X,I_X,J_Y,K_Y,N_Y,D_X,J_X,H_X]);
  165. print("A_x=0 A_y=0 B_x=0 C=(1,C_y,0) E_x=0 E_y=1 F=(1,0,0) G_x=1 G_y=0 H_y=0 M=(0,1,0) N=(1,N_y,0) ");
  166. print(ADEFAGHIBDGJBHKNCDLNCIKMEGMNEJKLFHLMFIJN);
  167. solve([-1/2+1*B_Y,-1/5+1*C_Y,-2+1*D_Y,-1/3+1*L_Y,-1/3+1*K_X,-3/5+1*C_X,-1/4+1*B_X,-1/2+1*N_X,-1/6+1*J_X,-1/2+1*I_Y,-2/3+1*L_X,-1/3+1*J_Y,-1/3+1*K_Y,+1+1*F_Y],[B_Y,C_Y,D_Y,L_Y,K_X,C_X,B_X,N_X,J_X,I_Y,L_X,J_Y,K_Y,F_Y]);
  168. print("A=(0,1,0) D=(1,D_y,0) E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=0 H_x=0 H_y=1 I_x=0 M_x=1 M_y=0 N_y=0 ");
  169. print(ABFLAGHMBIJNCFMNCGILDHLNDIKMEGKNEJLMFHJK);
  170. solve([+1+1*K_Y+1*K_Y*K_Y,+1*K_X+2*K_Y,+1+1*G_Y+1/2*K_Y,+1/2+1*H_Y,+1+1*E_Y+1*K_Y,-1+1*D_Y-1*K_Y,-2+1*C_Y-1*K_Y,-2+1*L_X,-1+1*I_Y-2*K_Y,+1*I_X+2*K_Y,+1+1*J_Y,-2+1*E_X,-2+1*J_X,+1*D_X+2*K_Y],[K_Y,K_X,G_Y,H_Y,E_Y,D_Y,C_Y,L_X,I_Y,I_X,J_Y,E_X,J_X,D_X]);
  171. print("A=(1,0,0) B_x=1 B_y=0 C_x=0 F_x=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) L_y=0 M=(0,1,0) N_x=0 N_y=1 ");
  172. print(ABCNADEFBGHICJKLDGJMDHKNEGLNEIKMFHLMFIJN);
  173. solve([+1-1*M_Y+1*M_Y*M_Y,+1*C_X+1*C_Y-1*M_Y-1*C_X*M_Y+1*M_Y*M_Y,+1*A_Y+1*C_X-1*M_Y,+1+1*K_Y-1*M_Y,-1+1*M_X+1*M_Y,+1+1*E_Y-1*M_Y,+1*A_X-1*C_X,-1+1*L_X,-1+1*E_X,+1*B_X-1*C_X,+1+1*D_Y,+1*L_Y-1*M_Y,+1*F_Y-1*M_Y],[C_X,C_Y,M_Y,A_Y,K_Y,M_X,E_Y,A_X,L_X,E_X,B_X,D_Y,L_Y,F_Y]);
  174. print("B_y=0 D=(1,D_y,0) F_x=0 G_x=1 G_y=0 H=(1,0,0) I_x=0 I_y=0 J_x=0 J_y=1 K=(1,K_y,0) N=(0,1,0) ");
  175. print(ABFLACGMBHMNCILNDGJNDIKMEFKNEJLMFHIJGHKL);
  176. solve([+3+1*D_X,-2/3+1*N_Y,+1+1*N_X,-1/3+1*E_Y,-4/3+1*K_Y,+1/3+1*J_Y,-4/3+1*I_Y,-4/3+1*D_Y,+1+1*I_X,-2/3+1*H_Y,+1+1*C_X,-2/3+1*B_Y,-1+1*K_X,-1+1*H_X],[D_X,N_Y,N_X,E_Y,K_Y,J_Y,I_Y,D_Y,I_X,H_Y,C_X,B_Y,K_X,H_X]);
  177. print("A_x=0 A_y=0 B_x=0 C_y=0 E=(1,E_y,0) F_x=0 F_y=1 G_x=1 G_y=0 J=(1,J_y,0) L=(0,1,0) M=(1,0,0) ");
  178. print(ABDEAFGHBIJNCFIKCGLNDFMNDJKLEGJMEHKNHILM);
  179. solve([+1-3*M_Y+1*M_Y*M_Y,-1+1*L_Y+3*M_Y,-1/2+1*A_X,+1*L_X-1*M_Y,+1+1*H_Y,+1+1*I_Y+1*M_Y,+1*K_Y+1*M_Y,-2+1*C_Y+4*M_Y,-1+1*G_Y+2*M_Y,+1*C_X-1*M_Y,-1+1*H_X,-1+1*K_X,+1*J_Y+1*M_Y,+1*G_X-1*M_Y],[M_Y,L_Y,A_X,L_X,H_Y,I_Y,K_Y,C_Y,G_Y,C_X,H_X,K_X,J_Y,G_X]);
  180. print("A_y=0 B=(1,0,0) D_x=0 D_y=0 E_x=1 E_y=0 F_x=0 F_y=1 I=(1,I_y,0) J=(1,J_y,0) M_x=0 N=(0,1,0) ");
  181. print(ADEFAGHIBDJKBGLNCDMNCEHLEIJNFGJMFHKNIKLM);
  182. solve([+1+1*L_X*N_Y,+1*B_Y+3*N_Y+1*B_Y*N_Y-2*L_X*N_Y+1*N_Y*N_Y,+1*L_X+1*N_Y+1/2*L_X*N_Y+1/2*N_Y*N_Y,+1+1*K_X-2*L_X,-2+1*M_X-1*N_Y,+1+1*M_Y+1*N_Y,+2+1*D_Y-2*L_X+1*N_Y,+3+1*C_Y-2*L_X+1*N_Y,+2+1*B_X+1*B_Y-2*L_X+1*N_Y,+1*H_X-1*L_X,+1+1*J_Y,+1*C_X-1*L_X,+1+1*K_Y+1*N_Y,+1+1*L_Y+1*N_Y],[B_Y,L_X,N_Y,K_X,M_X,M_Y,D_Y,C_Y,B_X,H_X,J_Y,C_X,K_Y,L_Y]);
  183. print("A_x=0 A_y=0 D_x=0 E=(0,1,0) F_x=0 F_y=1 G_x=1 G_y=0 H_y=0 I=(1,0,0) J=(1,J_y,0) N=(1,N_y,0) ");
  184. print(AEFGAHIMBEHJBFMNCEKNCJLMDGKMDHLNFIKLGIJN);
  185. solve([+1/6+1*L_Y,+2+1*H_Y,-1/6+1*C_Y,-1/2+1*E_X,-1/3+1*L_X,+1/2+1*K_Y,+3/2+1*D_Y,-1/2+1*N_Y,-1/3+1*J_Y,-1+1*K_X,-1/3+1*J_X,-1+1*D_X,+1/2+1*I_Y,-1/3+1*C_X],[L_Y,H_Y,C_Y,E_X,L_X,K_Y,D_Y,N_Y,J_Y,K_X,J_X,D_X,I_Y,C_X]);
  186. print("A=(1,0,0) B_x=0 B_y=1 E_y=0 F_x=0 F_y=0 G_x=1 G_y=0 H=(1,H_y,0) I=(1,I_y,0) M=(0,1,0) N_x=0 ");
  187. print(ABDEAFGHBIJNCFIKCGLNDFMNDHJLEHKNEILMGJKM);
  188. solve([+1-2*A_X*M_Y,+1*A_X-1*A_X*L_Y-1*M_Y-1*A_X*M_Y+1*L_Y*M_Y-2*M_Y*M_Y,+1*L_Y-1*M_Y-1*L_Y*M_Y+2*M_Y*M_Y,+1*L_X+1*L_Y-2*M_Y,-1+1*H_Y+2*M_Y,-1+1*K_Y+1*M_Y,-1+1*J_Y+2*M_Y,-1+1*C_Y-1*L_Y+1*M_Y,+1*G_Y-1*L_Y-1*M_Y,-1+1*K_X,+1*I_Y+1*M_Y,+1*C_X+1*L_Y-2*M_Y,+1*G_X+1*L_Y-2*M_Y,-1+1*H_X],[A_X,L_Y,M_Y,L_X,H_Y,K_Y,J_Y,C_Y,G_Y,K_X,I_Y,C_X,G_X,H_X]);
  189. print("A_y=0 B=(1,0,0) D_x=0 D_y=0 E_x=1 E_y=0 F_x=0 F_y=1 I=(1,I_y,0) J=(1,J_y,0) M_x=0 N=(0,1,0) ");
  190. print(ABEFACGMBHMNCIJNDEKNDILMEHJLFGLNFJKMGHIK);
  191. solve([+1+9/5*N_Y+4/5*N_Y*N_Y,+1*L_Y+2/5*N_Y+1*L_Y*N_Y+2/5*N_Y*N_Y,+8/5+1*K_X+8/5*N_Y,-7/5+1*L_X+1*L_Y-2/5*N_Y,-5+1*H_Y-6*N_Y,+4/5+1*J_X+4/5*N_Y,+1+1*E_Y+2*N_Y,-3/5+1*I_X+1*L_Y+2/5*N_Y,+1/5+1*D_X+1*L_Y+6/5*N_Y,-9/5+1*G_X-4/5*N_Y,-1+1*J_Y,-1+1*K_Y,+1*D_Y-1*L_Y,+1*I_Y-1*L_Y],[L_Y,N_Y,K_X,L_X,H_Y,J_X,E_Y,I_X,D_X,G_X,J_Y,K_Y,D_Y,I_Y]);
  192. print("A_x=0 A_y=0 B=(0,1,0) C_x=1 C_y=0 E_x=0 F_x=0 F_y=1 G_y=0 H=(1,H_y,0) M=(1,0,0) N=(1,N_y,0) ");
  193. print(ACDEBCFGBHINCJKNDFLNDHJMEGMNEHKLFIKMGIJL);
  194. solve([+1*L_Y+1*I_X*N_Y-1*M_X*N_Y,+1*I_X*L_Y+1*N_Y+1*I_X*N_Y-2*M_X*N_Y,+1*L_Y*M_X+1*I_X*N_Y-2*M_X*N_Y,+1*M_Y+1*N_Y-1*M_X*N_Y,+1+1*K_X-1*M_X,-1+1*B_X-1*I_X+1*M_X,+1*H_Y-1*L_Y-1*M_Y,+1*J_Y-1*M_Y-1*N_Y,+1*J_X-1*M_X,+1*I_Y-1*M_Y,+1*K_Y-1*M_Y,+1*E_Y+1*N_Y,+1*H_X-1*M_X],[I_X,L_Y,M_X,M_Y,N_Y,K_X,B_X,H_Y,J_Y,J_X,I_Y,K_Y,E_Y,H_X]);
  195. print("A_x=0 A_y=1 B_y=0 C_x=0 C_y=0 D=(0,1,0) E_x=0 F=(1,0,0) G_x=1 G_y=0 L=(1,L_y,0) N=(1,N_y,0) ");
  196. print(AEFGAHIMBEHJBFMNCEKNCJLMDGKMDIJNFIKLGHLN);
  197. solve([-1/6+1*L_Y,-1/2+1*I_Y,-1/4+1*K_Y,-1/3+1*C_Y,-3/4+1*D_Y,-1/2+1*N_Y,-1/3+1*L_X,-1/2+1*K_X,-2/3+1*J_Y,-1/2+1*D_X,-1/3+1*C_X,-1/2+1*G_X,+1+1*H_Y,-1/3+1*J_X],[L_Y,I_Y,K_Y,C_Y,D_Y,N_Y,L_X,K_X,J_Y,D_X,C_X,G_X,H_Y,J_X]);
  198. print("A=(1,0,0) B_x=0 B_y=1 E_x=1 E_y=0 F_x=0 F_y=0 G_y=0 H=(1,H_y,0) I=(1,I_y,0) M=(0,1,0) N_x=0 ");
  199. print(ABCDAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN);
  200. solve([+1-1*N_Y+1*A_Y*N_Y+1*J_X*N_Y,+1*J_X-1*N_Y+1*A_Y*N_Y,-1+1*E_X+1*J_X,-1+1*I_Y+1*J_X-1*N_Y,-1+1*G_Y+1*J_X,+1+1*F_Y-1*N_Y,+1*K_Y-1*N_Y,-1+1*K_X,-1+1*I_X,-1+1*A_X+1*A_Y,-1+1*E_Y+1*J_X-1*N_Y,+1*B_X-1*J_X+1*N_Y,-1+1*B_Y+1*J_X-1*N_Y],[A_Y,J_X,N_Y,E_X,I_Y,G_Y,F_Y,K_Y,K_X,I_X,A_X,E_Y,B_X,B_Y]);
  201. print("C_x=0 C_y=1 D_x=1 D_y=0 F=(1,F_y,0) G_x=0 H=(1,0,0) J_y=0 L_x=0 L_y=0 M=(0,1,0) N=(1,N_y,0) ");
  202. print(ABDNAEFGBHIJCEHKCILNDFIMDGKLEJLMFJKNGHMN);
  203. solve([+1+8/5*M_Y+1*M_Y*M_Y,-2/15+1*L_X+1/3*M_Y,-1/3+1*L_Y+1/3*M_Y,-13/15+1*K_X-1/3*M_Y,-4/3+1*C_Y-2/3*M_Y,+5/3+1*H_Y+1/3*M_Y,+1/3+1*J_Y+2/3*M_Y,-2/3+1*I_Y-1/3*M_Y,-1/3+1*K_Y+1/3*M_Y,-1/3+1*D_Y+1/3*M_Y,-2/15+1*C_X+1/3*M_Y,-2/15+1*I_X+1/3*M_Y,-13/15+1*J_X-1/3*M_Y,-13/15+1*F_X-1/3*M_Y],[M_Y,L_X,L_Y,K_X,C_Y,H_Y,J_Y,I_Y,K_Y,D_Y,C_X,I_X,J_X,F_X]);
  204. print("A_x=0 A_y=0 B_x=0 B_y=1 D_x=0 E_x=1 E_y=0 F_y=0 G=(1,0,0) H=(1,H_y,0) M=(1,M_y,0) N=(0,1,0) ");
  205. print(ABEFAGHMBIMNCDJMCEKNDGLNEHILFHJNFKLMGIJK);
  206. solve([-1/2+1*L_X,+1+1*J_Y,-1+1*K_X,-3+1*C_X,-5/2+1*D_X,-3/2+1*G_X,-2+1*J_X,+2+1*I_Y,+1+1*N_Y,-2+1*E_Y,-1+1*K_Y,-1+1*L_Y,+1+1*D_Y,+1+1*C_Y],[L_X,J_Y,K_X,C_X,D_X,G_X,J_X,I_Y,N_Y,E_Y,K_Y,L_Y,D_Y,C_Y]);
  207. print("A_x=0 A_y=0 B=(0,1,0) E_x=0 F_x=0 F_y=1 G_y=0 H_x=1 H_y=0 I=(1,I_y,0) M=(1,0,0) N=(1,N_y,0) ");
  208. print(AEFGAHIMBEHJBFMNCEKNCGLMDHLNDJKMFIKLGIJN);
  209. solve([+1+1*N_Y+1/2*N_Y*N_Y,-1/2+1*D_X+1/2*N_Y,-1/2+1*C_X-1/2*N_Y,-1/2+1*L_X,+1*J_X+1/2*N_Y,-1+1*K_Y-1/2*N_Y,+1*L_Y+1/2*N_Y,+1+1*B_Y,-1+1*J_Y-1/2*N_Y,-1+1*D_Y-1/2*N_Y,-1/2+1*K_X,-1/2+1*I_X,+1*G_Y+1/2*N_Y,+1*C_Y+1/2*N_Y],[N_Y,D_X,C_X,L_X,J_X,K_Y,L_Y,B_Y,J_Y,D_Y,K_X,I_X,G_Y,C_Y]);
  210. print("A_x=0 A_y=0 B=(1,B_y,0) E_x=0 E_y=1 F=(0,1,0) G_x=0 H_x=1 H_y=0 I_y=0 M=(1,0,0) N=(1,N_y,0) ");
  211. print(ABEFAGHMBIJNCEMNCGIKDGLNDJKMEHJLFHKNFILM);
  212. solve([+1-1*L_X+1/3*L_X*L_X,+1+1*H_Y-1/3*L_X,+1+1*K_Y-1*L_X,+2+1*G_Y-2/3*L_X,+3+1*D_Y-2*L_X,-3+1*K_X+1*L_X,-3+1*C_Y+1*L_X,+1+1*L_Y,-3+1*D_X+1*L_X,+2+1*J_Y-1*L_X,-1+1*I_Y+1*L_X,-3+1*J_X+1*L_X,+1*I_X-1*L_X,+1*F_X-1*L_X],[L_X,H_Y,K_Y,G_Y,D_Y,K_X,C_Y,L_Y,D_X,J_Y,I_Y,J_X,I_X,F_X]);
  213. print("A=(1,0,0) B_x=1 B_y=0 C_x=0 E_x=0 E_y=0 F_y=0 G=(1,G_y,0) H=(1,H_y,0) M=(0,1,0) N_x=0 N_y=1 ");
  214. print(ABEMAFGNBHINCEFJCHKMDGIKDJMNEKLNFILMGHJL);
  215. solve([+4/3+1*N_Y,-1/2+1*M_X,-1+1*D_X,+2/3+1*L_Y,-3/2+1*K_X,+1/2+1*H_X,-2+1*H_Y,+2+1*K_Y,+2/3+1*D_Y,+8/3+1*G_Y,-2/3+1*J_Y,-2/3+1*I_Y,-1/2+1*I_X,-1/2+1*L_X],[N_Y,M_X,D_X,L_Y,K_X,H_X,H_Y,K_Y,D_Y,G_Y,J_Y,I_Y,I_X,L_X]);
  216. print("A=(1,0,0) B_x=1 B_y=0 C_x=0 C_y=1 E_x=0 E_y=0 F=(0,1,0) G=(1,G_y,0) J_x=0 M_y=0 N=(1,N_y,0) ");
  217. print(ABFLAGHMBIMNCFJNCGILDFKMDHLNEGKNEJLMHIJK);
  218. solve([+1+4/3*N_Y+1/3*N_Y*N_Y,+1*C_Y+2/3*N_Y+1*C_Y*N_Y+2/3*N_Y*N_Y,-2+1*K_Y-1*N_Y,+2/3+1*K_X+2/3*N_Y,+1/3+1*E_X+1/3*N_Y,+1/3+1*D_X+1/3*N_Y,-1+1*C_X+1*C_Y,-4/3+1*H_X-1/3*N_Y,-1/3+1*J_X-1/3*N_Y,-2+1*F_Y-1*N_Y,-1+1*E_Y,-1+1*J_Y,-2+1*D_Y-1*N_Y,+1+1*I_Y],[C_Y,N_Y,K_Y,K_X,E_X,D_X,C_X,H_X,J_X,F_Y,E_Y,J_Y,D_Y,I_Y]);
  219. print("A_x=0 A_y=0 B=(0,1,0) F_x=0 G_x=1 G_y=0 H_y=0 I=(1,I_y,0) L_x=0 L_y=1 M=(1,0,0) N=(1,N_y,0) ");
  220. print(ABEMAFGHBIJNCFIKCGMNDFLNDJKMEGJLEHKNHILM);
  221. solve([+1-1*K_Y-1*K_Y*K_Y,+2+1*C_Y-2*K_Y,-1/2+1*K_X+1/2*K_Y,-1/2+1*L_X,-1+1*I_Y+1*K_Y,-2+1*B_Y+1*K_Y,-1+1*D_Y-1*K_Y,+2+1*N_Y,-1+1*L_Y,-1+1*J_Y,-1/2+1*D_X+1/2*K_Y,-1/2+1*J_X+1/2*K_Y,-1/2+1*I_X,-1/2+1*H_X],[K_Y,C_Y,K_X,L_X,I_Y,B_Y,D_Y,N_Y,L_Y,J_Y,D_X,J_X,I_X,H_X]);
  222. print("A_x=0 A_y=0 B_x=0 C=(1,C_y,0) E_x=0 E_y=1 F_x=1 F_y=0 G=(1,0,0) H_y=0 M=(0,1,0) N=(1,N_y,0) ");
  223. print(ABMNAEFGBEHICFJMCHKNDFLNDIKMEJKLGHLMGIJN);
  224. solve([+1-2*N_Y+2*N_Y*N_Y,-1+1*K_Y,-1+1*C_Y+2*N_Y,-1/2+1*L_X,+1*K_X-1*N_Y,+1*J_Y+2*N_Y,+1*D_X-1*N_Y,-1+1*I_Y+1*N_Y,+1*L_Y-1*N_Y,+1*D_Y-1*N_Y,-1/2+1*H_Y,-1/2+1*G_X,+1*I_X-1*N_Y,-1/2+1*H_X],[N_Y,K_Y,C_Y,L_X,K_X,J_Y,D_X,I_Y,L_Y,D_Y,H_Y,G_X,I_X,H_X]);
  225. print("A_x=0 A_y=0 B_x=0 B_y=1 C=(1,C_y,0) E_x=1 E_y=0 F=(1,0,0) G_y=0 J=(1,J_y,0) M=(0,1,0) N_x=0 ");
  226. print(ABDNAEFGBHIJCEKLCFHNDGIKDHLMEIMNFJKMGJLN);
  227. solve([+1+1*M_Y+2*J_Y*M_Y,+1*J_Y-1*M_Y+2*J_Y*M_Y-1*M_Y*M_Y,+1*K_X+1*M_Y,+1*H_X-2*J_Y+1*M_Y,-1+1*B_Y-1*J_Y,-1+1*H_Y+1*J_Y-1*M_Y,-1+1*L_Y-1*M_Y,-1+1*K_Y-1*M_Y,+1+1*I_Y,+1*F_X-2*J_Y+1*M_Y,-1+1*C_Y-1*M_Y,+1*C_X-2*J_Y+1*M_Y,-1+1*L_X,-1+1*J_X],[J_Y,M_Y,K_X,H_X,B_Y,H_Y,L_Y,K_Y,I_Y,F_X,C_Y,C_X,L_X,J_X]);
  228. print("A_x=0 A_y=0 B_x=0 D_x=0 D_y=1 E=(1,0,0) F_y=0 G_x=1 G_y=0 I=(1,I_y,0) M=(1,M_y,0) N=(0,1,0) ");
  229. print(ABEFACGMBHMNCIJNDEKNDHILEJLMFGLNFIKMGHJK);
  230. solve([+1-1/2*N_X-1*N_Y-1/2*N_X*N_Y,+1*I_X-1/2*N_X+1*I_X*N_Y-1/2*N_X*N_Y,+1*J_Y-1*J_Y*N_X+1*N_Y,+1*I_X*J_Y-1/2*N_X-1*J_Y*N_X-1/2*N_X*N_Y,-1/2+1*D_Y-1/2*N_Y,+1/2+1*L_Y+1/2*N_Y,+1*H_X+1*I_X-2*N_X,-1+1*G_X+1*I_X-1*N_X,+1*D_X-1*N_X,+1*K_X-1*N_X,-1+1*I_Y,-1+1*K_Y,+1*H_Y-1*N_Y,+1*B_Y-1*N_Y],[I_X,J_Y,N_X,N_Y,D_Y,L_Y,H_X,G_X,D_X,K_X,I_Y,K_Y,H_Y,B_Y]);
  231. print("A_x=0 A_y=0 B_x=0 C_x=1 C_y=0 E=(0,1,0) F_x=0 F_y=1 G_y=0 J=(1,J_y,0) L=(1,L_y,0) M=(1,0,0) ");
  232. print(ABDNAEFGBEHICFJKCHLNDGJLDHKMEJMNFILMGIKN);
  233. solve([+1+1*L_Y-1*L_Y*M_X,+1*A_Y+1*M_X-1*A_Y*M_X+1*L_Y*M_X,+1*C_Y-1*C_Y*M_X+1*L_Y*M_X,+1*A_Y*F_X-1*A_Y*M_X+1*F_Y*M_X,+1*C_Y*F_X-1*F_X*L_Y-1*C_Y*M_X+2*L_Y*M_X,+1*F_Y+1*L_Y-1*F_X*L_Y,-1+1*G_Y-1*L_Y,-2+1*J_Y-1*L_Y,+1*J_X-1*M_X,+1*E_X-1*M_X,-1+1*K_Y,-1+1*M_Y,-1+1*K_X,-1+1*G_X],[A_Y,C_Y,F_X,F_Y,L_Y,M_X,G_Y,J_Y,J_X,E_X,K_Y,M_Y,K_X,G_X]);
  234. print("A_x=0 B_x=0 B_y=0 C=(1,C_y,0) D_x=0 D_y=1 E_y=0 H=(1,0,0) I_x=1 I_y=0 L=(1,L_y,0) N=(0,1,0) ");
  235. print(ABEFAGHMBIMNCDJNCGIKDELMEHKNFGLNFJKMHIJL);
  236. solve([+5/4+1*C_Y,-3/4+1*C_X,+1/2+1*N_Y,-1/2+1*N_X,+1+1*L_Y,+2+1*J_Y,+1+1*K_Y,+3/2+1*I_Y,+1+1*H_Y,-1/2+1*I_X,-1+1*K_X,-1+1*J_X,-1+1*G_Y,-1/2+1*B_X],[C_Y,C_X,N_Y,N_X,L_Y,J_Y,K_Y,I_Y,H_Y,I_X,K_X,J_X,G_Y,B_X]);
  237. print("A=(1,0,0) B_y=0 D_x=0 D_y=1 E_x=0 E_y=0 F_x=1 F_y=0 G=(1,G_y,0) H=(1,H_y,0) L_x=0 M=(0,1,0) ");
  238. print(ABMNAEFGBEHICFJMCGKNDHKMDIJNEJKLFHLNGILM);
  239. solve([+1*L_Y*L_Y+1*M_Y+2*L_Y*M_Y,+1*K_X-1*L_Y-2*M_Y,-1+1*J_X+1*L_Y+2*M_Y,+1+1*D_Y-1*L_Y-3*M_Y,+1*I_Y-1*L_Y-2*M_Y,+1*K_Y+1*L_Y+1*M_Y,+1+1*H_Y,-1+1*I_X+1*L_Y+2*M_Y,-1+1*D_X+1*L_Y+2*M_Y,+1*C_Y-1*M_Y,+1*G_X-1*L_Y-2*M_Y,+1*J_Y-1*M_Y,+1*C_X-1*L_Y-2*M_Y],[L_Y,M_Y,K_X,J_X,D_Y,I_Y,K_Y,H_Y,I_X,D_X,C_Y,G_X,J_Y,C_X]);
  240. print("A_x=0 A_y=0 B_x=0 B_y=1 E_x=1 E_y=0 F=(1,0,0) G_y=0 H=(1,H_y,0) L=(1,L_y,0) M_x=0 N=(0,1,0) ");
  241. print(ABMNAEFGBHIJCEKLCFHMDEINDJKMFJLNGHKNGILM);
  242. solve([+1-3*N_Y+5/2*N_Y*N_Y,+1+1*K_X-5/2*N_Y,-2+1*L_Y+4*N_Y,-2+1*H_X+5/2*N_Y,+2+1*C_Y-3*N_Y,-1+1*D_Y+1*N_Y,-2+1*J_Y+2*N_Y,+1*I_Y+1*N_Y,+1+1*D_X-5/2*N_Y,+1+1*J_X-5/2*N_Y,-2+1*C_X+5/2*N_Y,-2+1*F_X+5/2*N_Y,+1*K_Y-1*N_Y,+1*H_Y-1*N_Y],[N_Y,K_X,L_Y,H_X,C_Y,D_Y,J_Y,I_Y,D_X,J_X,C_X,F_X,K_Y,H_Y]);
  243. print("A_x=0 A_y=0 B_x=0 B_y=1 E_x=1 E_y=0 F_y=0 G=(1,0,0) I=(1,I_y,0) L=(1,L_y,0) M=(0,1,0) N_x=0 ");
  244. print(AEFGAHIMBEHJBFKNCEMNCIKLDGKMDIJNFJLMGHLN);
  245. solve([+1+1/2*N_Y-1/2*L_X*N_Y,+1*C_Y-1/2*N_Y,-1/2+1*J_X-1/2*L_X,+1*K_X+1*L_X,-1/2+1*D_X+1/2*L_X,+1+1*K_Y+1*N_Y,-2+1*B_Y-1*N_Y,+1+1*G_Y+1*N_Y,-1/2+1*H_X-1/2*L_X,-1+1*J_Y,-1+1*L_Y,-1/2+1*B_X-1/2*L_X,+1+1*D_Y+1*N_Y],[L_X,N_Y,C_Y,J_X,K_X,D_X,K_Y,B_Y,G_Y,H_X,J_Y,L_Y,B_X,D_Y]);
  246. print("A_x=0 A_y=0 C=(1,C_y,0) E=(0,1,0) F_x=0 F_y=1 G_x=0 H_y=0 I_x=1 I_y=0 M=(1,0,0) N=(1,N_y,0) ");
  247. print(ABDEAFGHBIJNCDIKCFLNDGMNEGJLEHKNFJKMHILM);
  248. solve([-4/3+1*K_X,-8/3+1*L_X,+3+1*L_Y,+9/4+1*J_Y,+2+1*K_Y,+3/2+1*I_Y,+1+1*H_Y,-3+1*G_Y,+4+1*C_Y,+5+1*F_Y,-4/3+1*H_X,-8/3+1*C_X,-8/3+1*F_X,-4/3+1*E_X],[K_X,L_X,L_Y,J_Y,K_Y,I_Y,H_Y,G_Y,C_Y,F_Y,H_X,C_X,F_X,E_X]);
  249. print("A_x=1 A_y=0 B=(1,0,0) D_x=0 D_y=0 E_y=0 G_x=0 I=(1,I_y,0) J=(1,J_y,0) M_x=0 M_y=1 N=(0,1,0) ");
  250. print(ABDNAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN);
  251. solve([+1*K_Y+1*M_Y+1*K_Y*M_Y,+1+1*C_X+1*K_Y+1*M_Y,-1+1*A_Y-1*K_Y-1*M_Y,+1*F_Y-1*K_Y-1*M_Y,+1*G_X+1*K_Y+1*M_Y,+1*J_X+1*K_Y,+1*M_X+1*M_Y,+1*I_Y+1*K_Y,+1*A_X+1*K_Y+1*M_Y,+1*G_Y-1*M_Y,+1+1*N_Y,+1*C_Y-1*M_Y,+1*F_X+1*K_Y+1*M_Y],[K_Y,M_Y,C_X,A_Y,F_Y,G_X,J_X,M_X,I_Y,A_X,G_Y,N_Y,C_Y,F_X]);
  252. print("B_x=0 B_y=1 D_x=1 D_y=0 E=(0,1,0) H_x=0 H_y=0 I_x=0 J_y=0 K=(1,K_y,0) L=(1,0,0) N=(1,N_y,0) ");
  253. print(ABMNCDEFCGHICJKLDGJMDHKNEGLNEIKMFHLMFIJN);
  254. solve([+1-1*L_Y+1*L_Y*L_Y,+1*C_Y-1*L_Y+1*C_Y*L_Y,+1*C_X-1*C_Y,+1*K_X-1*L_Y,+1*G_Y-1*L_Y,+1*E_Y-1*L_Y,+1*I_X-1*L_Y,+1*E_X-1*L_Y,-1+1*F_X,-1+1*L_X,-1+1*I_Y,-1+1*F_Y],[C_Y,L_Y,C_X,K_X,G_Y,E_Y,I_X,E_X,F_X,L_X,I_Y,F_Y]);
  255. print("A=(1,A_y,0) B=(1,B_y,0) D_x=0 D_y=0 G_x=0 H_x=1 H_y=0 J_x=0 J_y=1 K_y=0 M=(0,1,0) N=(1,0,0) ");
  256. print(ADEFAGHIBDGJBHKNCEKLCFJNDILNEGMNFHLMIJKM);
  257. solve([+1+3*N_Y+2*N_Y*N_Y,+1*C_Y+8/3*N_Y+1*C_Y*N_Y+8/3*N_Y*N_Y,-5/3+1*J_X-2/3*N_Y,-2/3+1*M_Y-2/3*N_Y,-1/3+1*C_X+1*C_Y+2/3*N_Y,+1/3+1*K_X+4/3*N_Y,+1/3+1*B_Y+1/3*N_Y,-1/3+1*M_X+2/3*N_Y,-1/3+1*E_Y+2/3*N_Y,-5/3+1*B_X-2/3*N_Y,+1+1*L_Y,-5/3+1*G_X-2/3*N_Y,-2/3+1*K_Y-2/3*N_Y,-2/3+1*J_Y-2/3*N_Y],[C_Y,N_Y,J_X,M_Y,C_X,K_X,B_Y,M_X,E_Y,B_X,L_Y,G_X,K_Y,J_Y]);
  258. print("A_x=0 A_y=0 D=(0,1,0) E_x=0 F_x=0 F_y=1 G_y=0 H_x=1 H_y=0 I=(1,0,0) L=(1,L_y,0) N=(1,N_y,0) ");
  259. print(ABFLAGHMBIMNCDLNCGIJDFKMEGKNEJLMFHJNHIKL);
  260. solve([+1-1*L_Y*L_Y,+1*C_Y-2*L_Y-1*C_Y*L_Y+2*L_Y*L_Y,-1+1*K_X+1*L_Y,+1*C_X+1*C_Y-1*L_Y,+1+1*D_X-1*L_Y,-2+1*E_X+2*L_Y,-2+1*G_X+1*L_Y,-1+1*J_X+1*L_Y,+1*J_Y-1*L_Y,+1*E_Y-1*L_Y,+1+1*N_Y,-1+1*D_Y,+1*I_Y+1*L_Y,-1+1*K_Y],[C_Y,L_Y,K_X,C_X,D_X,E_X,G_X,J_X,J_Y,E_Y,N_Y,D_Y,I_Y,K_Y]);
  261. print("A_x=0 A_y=0 B=(0,1,0) F_x=0 F_y=1 G_y=0 H_x=1 H_y=0 I=(1,I_y,0) L_x=0 M=(1,0,0) N=(1,N_y,0) ");
  262. print(ABEMAFGHBIJNCEIKCFMNDGKNDHJMEHLNFJKLGILM);
  263. solve([+1+4*N_Y+3*N_Y*N_Y,-4+1*J_X-3*N_Y,+2+1*K_X+3*N_Y,-2+1*I_Y-2*N_Y,+1+1*D_Y+1*N_Y,-2+1*B_Y-1*N_Y,-1+1*C_Y-2*N_Y,-1+1*L_Y-1*N_Y,-4+1*H_X-3*N_Y,-4+1*D_X-3*N_Y,-1+1*K_Y-1*N_Y,-1+1*J_Y-1*N_Y,-1+1*I_X,-1+1*L_X],[N_Y,J_X,K_X,I_Y,D_Y,B_Y,C_Y,L_Y,H_X,D_X,K_Y,J_Y,I_X,L_X]);
  264. print("A_x=0 A_y=0 B_x=0 C=(1,C_y,0) E_x=0 E_y=1 F=(1,0,0) G_x=1 G_y=0 H_y=0 M=(0,1,0) N=(1,N_y,0) ");
  265. print(ABLMAFGHBIJNCFKNCGILDFJMDHLNEGMNEJKLHIKM);
  266. solve([+1-1*K_Y-1*K_Y*K_Y,+1*C_X+1*K_Y-1*C_X*K_Y,-1+1*J_X+2*K_Y,+1/2+1*B_Y,-1+1*D_X+1*K_Y,-1+1*E_X+1*K_Y,+1+1*I_X,-1+1*F_Y+1*K_Y,+1*K_X+1*K_Y,-1+1*I_Y,+1*J_Y-1*K_Y,+1*E_Y-1*K_Y,-1+1*C_Y,+1+1*M_Y],[C_X,K_Y,J_X,B_Y,D_X,E_X,I_X,F_Y,K_X,I_Y,J_Y,E_Y,C_Y,M_Y]);
  267. print("A=(0,1,0) B=(1,B_y,0) D_y=0 F_x=0 G_x=0 G_y=1 H_x=0 H_y=0 L=(1,0,0) M=(1,M_y,0) N_x=1 N_y=0 ");
  268. print(ABEMAFGHBIJNCFIKCGLNDEJLDFMNEHKNGJKMHILM);
  269. solve([+1-2*N_Y-3*N_Y*N_Y,-5/2+1*C_X-3/2*N_Y,+1/2+1*L_X+3/2*N_Y,-1/2+1*D_Y-3/2*N_Y,+1/2+1*L_Y+1/2*N_Y,-1+1*J_Y-1*N_Y,-1/2+1*K_Y-1/2*N_Y,-1/2+1*E_Y+1/2*N_Y,-1/2+1*I_Y-1/2*N_Y,-1/2+1*C_Y-1/2*N_Y,-1+1*J_X,-1+1*K_X,+1/2+1*I_X+3/2*N_Y,+1/2+1*H_X+3/2*N_Y],[N_Y,C_X,L_X,D_Y,L_Y,J_Y,K_Y,E_Y,I_Y,C_Y,J_X,K_X,I_X,H_X]);
  270. print("A_x=0 A_y=0 B_x=0 B_y=1 D=(1,D_y,0) E_x=0 F=(1,0,0) G_x=1 G_y=0 H_y=0 M=(0,1,0) N=(1,N_y,0) ");
  271. print(AELMBEFGBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL);
  272. solve([+2+1*M_Y,-1/2+1*B_Y,+1+1*K_Y,+1/2+1*I_X,-1/2+1*N_X,-3/2+1*H_X,-1+1*D_X,-1/2+1*J_X,-1/2+1*K_X,+1+1*H_Y,+1+1*D_Y,-1+1*J_Y,-1+1*I_Y],[M_Y,B_Y,K_Y,I_X,N_X,H_X,D_X,J_X,K_X,H_Y,D_Y,J_Y,I_Y]);
  273. print("A=(1,A_y,0) B_x=0 C_x=1 C_y=0 E=(0,1,0) F_x=0 F_y=0 G_x=0 G_y=1 L=(1,0,0) M=(1,M_y,0) N_y=0 ");
  274. print(ADEFBCMNBGHICJKLDGJMDHKNEGLNEIKMFHLMFIJN);
  275. solve([+1-3*M_Y+3*M_Y*M_Y,+1*A_X-1*A_Y-2*A_X*M_Y+3*M_Y*M_Y,-2+1*L_X+3*M_Y,-1+1*D_Y+2*M_Y,-1+1*J_Y+1*M_Y,+1+1*E_Y-2*M_Y,-2+1*G_X+3*M_Y,+1*K_Y+1*M_Y,-2+1*E_X+3*M_Y,+1*F_Y-1*M_Y,+1*L_Y-1*M_Y,-1+1*F_X,-1+1*J_X],[A_X,A_Y,M_Y,L_X,D_Y,J_Y,E_Y,G_X,K_Y,E_X,F_Y,L_Y,F_X,J_X]);
  276. print("B_x=0 B_y=0 C_x=0 C_y=1 D=(1,D_y,0) G_y=0 H=(1,0,0) I_x=1 I_y=0 K=(1,K_y,0) M_x=0 N=(0,1,0) ");
  277. print(ABFLACMNBGHICJKLDGJMDHLNEGKNEILMFHKMFIJN);
  278. solve([+1-1*K_Y+1*K_Y*K_Y,+1+1*J_Y-1*K_Y,-1/2+1*B_X,+1+1*C_Y-1*K_Y,+1+1*E_Y-1*K_Y,+1+1*G_Y-2*K_Y,+1+1*I_Y,+1*D_Y-1*K_Y,-1+1*K_X+1*K_Y,-1+1*E_X+1*K_Y,+1+1*M_Y,-1+1*G_X+1*K_Y,-1+1*J_X,-1+1*I_X],[K_Y,J_Y,B_X,C_Y,E_Y,G_Y,I_Y,D_Y,K_X,E_X,M_Y,G_X,J_X,I_X]);
  279. print("A=(1,0,0) B_y=0 C=(1,C_y,0) D_x=0 F_x=1 F_y=0 H_x=0 H_y=1 L_x=0 L_y=0 M=(1,M_y,0) N=(0,1,0) ");
  280. print(ABKLAGHMBIJNCDMNCGIKDHJLEHKNEILMFGLNFJKM);
  281. solve([+1+1*N_X+1*N_X*N_X,+1*D_X+1*D_X*N_X-1*N_X*N_X,-2+1*D_Y-1*N_X,-1+1*C_X-1*N_X,-1+1*M_Y-1*N_X,+2/3+1*B_Y+1/3*N_X,+1+1*F_X,+1+1*J_X+1*N_X,-1+1*E_X-1*N_X,-1+1*N_Y,+1+1*L_Y+1*N_X,-1+1*E_Y,-1+1*J_Y-1*N_X,-1+1*F_Y-1*N_X],[D_X,N_X,D_Y,C_X,M_Y,B_Y,F_X,J_X,E_X,N_Y,L_Y,E_Y,J_Y,F_Y]);
  282. print("A=(0,1,0) B=(1,B_y,0) C_y=0 G_x=0 G_y=0 H_x=0 H_y=1 I_x=1 I_y=0 K=(1,0,0) L=(1,L_y,0) M_x=0 ");
  283. print(ABEFAGHIBGMNCDJMCEKNDHLNEILMFHKMFIJNGJKL);
  284. solve([-1/4+1*J_Y,-1/2+1*N_Y,-3/4+1*C_Y,-1/2+1*C_X,-3/4+1*D_X,-3/2+1*G_X,-1/2+1*L_X,+1/2+1*K_Y,-3/2+1*B_Y,-1/2+1*D_Y,-1+1*J_X,-1+1*N_X,+1+1*M_Y,-1/2+1*L_Y],[J_Y,N_Y,C_Y,C_X,D_X,G_X,L_X,K_Y,B_Y,D_Y,J_X,N_X,M_Y,L_Y]);
  285. print("A_x=0 A_y=0 B_x=0 E_x=0 E_y=1 F=(0,1,0) G_y=0 H=(1,0,0) I_x=1 I_y=0 K=(1,K_y,0) M=(1,M_y,0) ");
  286. print(ABGKACLMBHINCJKNDELNDHJMEIKMFGMNFHKLGIJL);
  287. solve([-3/2+1*D_X,+2/3+1*E_Y,-2+1*L_X,-2/3+1*N_Y,-1/3+1*J_Y,+1/3+1*I_Y,-1/3+1*D_Y,-1/3+1*H_Y,-2/3+1*F_Y,-2/3+1*G_Y,-2+1*H_X,-2+1*F_X,-1+1*J_X,-1+1*N_X],[D_X,E_Y,L_X,N_Y,J_Y,I_Y,D_Y,H_Y,F_Y,G_Y,H_X,F_X,J_X,N_X]);
  288. print("A_x=0 A_y=0 B_x=0 B_y=1 C_x=1 C_y=0 E=(1,E_y,0) G_x=0 I=(1,I_y,0) K=(0,1,0) L_y=0 M=(1,0,0) ");
  289. print(AEFGBELMBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL);
  290. solve([-1/2+1*B_Y,-1/2+1*D_Y,-1+1*D_X,+2+1*I_X,+1/2+1*G_Y,-1/3+1*H_Y,-2+1*N_X,+1+1*J_Y,-2+1*K_X,-1+1*I_Y,-1+1*K_Y,-2+1*J_X,-2/3+1*H_X],[B_Y,D_Y,D_X,I_X,G_Y,H_Y,N_X,J_Y,K_X,I_Y,K_Y,J_X,H_X]);
  291. print("A=(1,A_y,0) B_x=0 C_x=1 C_y=0 E=(0,1,0) F=(1,0,0) G=(1,G_y,0) L_x=0 L_y=0 M_x=0 M_y=1 N_y=0 ");
  292. print(ABFLAGHIBGMNCDLMCFJNDHKNEHJMEILNFIKMGJKL);
  293. solve([+3/4+1*N_Y,-3/2+1*C_Y,-1+1*D_Y,+1/2+1*E_Y,-1/3+1*K_X,+2/3+1*C_X,+1/3+1*D_X,-4/3+1*E_X,-2/3+1*J_X,+3/2+1*M_Y,-1/2+1*L_Y,-2/3+1*I_X,-1/2+1*K_Y,-1/2+1*J_Y],[N_Y,C_Y,D_Y,E_Y,K_X,C_X,D_X,E_X,J_X,M_Y,L_Y,I_X,K_Y,J_Y]);
  294. print("A_x=0 A_y=0 B=(0,1,0) F_x=0 F_y=1 G=(1,0,0) H_x=1 H_y=0 I_y=0 L_x=0 M=(1,M_y,0) N=(1,N_y,0) ");
  295. print(ABCMADENAFGHBDIJBFKNCEKLCGINDFLMEHIMGJKMHJLN);
  296. solve([+1+1*M_X*M_X,+1*K_Y-1*M_X+1*K_Y*M_X,+1*K_X-1*K_Y,-1+1*L_Y-1*M_X,-1+1*N_Y,+1+1*H_X-1*M_X,-1+1*G_X-1*M_X,+1*E_Y+1*M_X,+1*H_Y-1*M_X,+1*F_Y-1*M_X,+1*L_X-1*M_X,+1*G_Y-1*M_X,+1*F_X-1*M_X,+1+1*I_Y],[K_Y,M_X,K_X,L_Y,N_Y,H_X,G_X,E_Y,H_Y,F_Y,L_X,G_Y,F_X,I_Y]);
  297. print("A=(1,0,0) B_x=0 B_y=0 C_x=1 C_y=0 D=(0,1,0) E=(1,E_y,0) I_x=0 J_x=0 J_y=1 M_y=0 N=(1,N_y,0) ");
复制代码



==========
wayne实数解:
{{14,10},"ACDEAFGHBIJKBLMNCFILCGJMDFJNDHKLEGKNEHIM",{{{"A",{1,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,0,1}},{"E",{1,0,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,-1,0}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,1,0}},{"N",{0,0,1}}},{{"A",{1+Sqrt[5],1/2 (1-Sqrt[5]),1}},{"B",{0,1/2 (-1+Sqrt[5]),1}},{"C",{1/2 (3+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"D",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"E",{1,0,0}},{"F",{2+Sqrt[5],1/2 (-1-Sqrt[5]),1}},{"G",{1/2 (3+Sqrt[5]),0,1}},{"H",{1,-1,0}},{"I",{1,1/2 (1-Sqrt[5]),0}},{"J",{1/2 (3+Sqrt[5]),-1,1}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,1,0}},{"N",{0,0,1}}},{{"A",{1-Sqrt[5],1/2 (1+Sqrt[5]),1}},{"B",{0,1/2 (-1-Sqrt[5]),1}},{"C",{1/2 (3-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"D",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"E",{1,0,0}},{"F",{2-Sqrt[5],1/2 (-1+Sqrt[5]),1}},{"G",{1/2 (3-Sqrt[5]),0,1}},{"H",{1,-1,0}},{"I",{1,1/2 (1+Sqrt[5]),0}},{"J",{1/2 (3-Sqrt[5]),-1,1}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,1,0}},{"N",{0,0,1}}}}}
{{14,10},"AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEGKLFHIJ",{{{"A",{0,1,1}},{"B",{1,0,0}},{"C",{(2 Dy)/(-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,-1,1}},{"D",{(1-Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,Dy,1}},{"E",{0,0,1}},{"F",{0,(2 Dy)/(1+Dy) if -1<Dy<1||Dy>1||Dy<-1,1}},{"G",{1,-1,0}},{"H",{(1-Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,(1+Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,1}},{"I",{(2 Dy)/(-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,0,1}},{"J",{1,-1+2/(1+Dy) if -1<Dy<1||Dy>1||Dy<-1,0}},{"K",{(2 Dy)/(-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,-((2 Dy)/(-1+Dy)) if -1<Dy<1||Dy>1||Dy<-1,1}},{"L",{(1-Dy)/2 if -1<Dy<1||Dy>1||Dy<-1,1/2 (-1+Dy) if -1<Dy<1||Dy>1||Dy<-1,1}},{"M",{0,1,0}},{"N",{1,0,1}}}}}
{{14,10},"AEFMAGHNBEINBGJMCIKMCJLNDFKNDHLMEHJKFGIL",{{{"A",{0,0,1}},{"B",{1,-(1/Gx) if -1<Gx<0||Gx>0||Gx<-1,0}},{"C",{1+1/Gx if -1<Gx<0||Gx>0||Gx<-1,(-1+Gx)/Gx if -1<Gx<0||Gx>0||Gx<-1,1}},{"D",{1/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,Gx/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,1}},{"E",{0,1,0}},{"F",{0,Gx/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,1}},{"G",{Gx,0,1}},{"H",{1,0,1}},{"I",{1,-(1/(1+Gx)) if -1<Gx<0||Gx>0||Gx<-1,0}},{"J",{1,(-1+Gx)/Gx if -1<Gx<0||Gx>0||Gx<-1,1}},{"K",{1,Gx/(1+Gx) if -1<Gx<0||Gx>0||Gx<-1,1}},{"L",{1/Gx if -1<Gx<0||Gx>0||Gx<-1,(-1+Gx)/Gx if -1<Gx<0||Gx>0||Gx<-1,1}},{"M",{0,1,1}},{"N",{1,0,0}}}}}
{{14,10},"AEFMAGHNBEINBGJMCHKMCJLNDFKNDILMEGKLFHIJ",{{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{0,1,1}},{"D",{1,0,1}},{"E",{1,0,0}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{0,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,0,1}}}}}
{{14,10},"AEFGAHMNBEIMBFJNCEKNCGLMDILNDJKMFHKLGHIJ",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1,1/2 (-3-Sqrt[5]),1}},{"D",{1/2 (1-Sqrt[5]),1+Sqrt[5],1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{1/2 (-1-Sqrt[5]),0,1}},{"H",{1,1/2 (1+Sqrt[5]),0}},{"I",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"J",{0,1/2 (3+Sqrt[5]),1}},{"K",{1,1/2 (1+Sqrt[5]),1}},{"L",{1/2 (1-Sqrt[5]),-1,1}},{"M",{1,-1,0}},{"N",{0,1,0}}},{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1,1/2 (-3+Sqrt[5]),1}},{"D",{1/2 (1+Sqrt[5]),1-Sqrt[5],1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{1/2 (-1+Sqrt[5]),0,1}},{"H",{1,1/2 (1-Sqrt[5]),0}},{"I",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"J",{0,1/2 (3-Sqrt[5]),1}},{"K",{1,1/2 (1-Sqrt[5]),1}},{"L",{1/2 (1+Sqrt[5]),-1,1}},{"M",{1,-1,0}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDGIBJKNCELNCHJMDKLMEHIKFGJLFIMN",{{{"A",{0,0,1}},{"B",{Root[-1+4 #1-5 #1^2+#1^3&,1,0],Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"C",{Root[1+2 #1-3 #1^2+#1^3&,1,0],Root[1-#1^2+#1^3&,1,0],1}},{"D",{0,1,1}},{"E",{0,Root[1-#1^2+#1^3&,1,0],1}},{"F",{0,1,0}},{"G",{1,0,1}},{"H",{Root[1-#1^2+#1^3&,1,0],0,1}},{"I",{1,-1,0}},{"J",{1,Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"K",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"L",{1,Root[1-#1^2+#1^3&,1,0],1}},{"M",{1,Root[1+#1+2 #1^2+#1^3&,1,0],0}},{"N",{1,0,0}}}}}
{{14,10},"ACDEAFGHBCIJBFKLCGKMDFMNDHILEHJMEIKNGJLN",{{{"A",{Root[-1+2 #1-#1^2+#1^3&,1,0],Root[1-#1+#1^3&,1,0],1}},{"B",{Root[1+3 #1+2 #1^2+#1^3&,1,0],1+Root[1+2 #1+#1^2+#1^3&,1,0],1}},{"C",{Root[-1-#1+#1^3&,1,0],Root[1-#1+#1^3&,1,0],1}},{"D",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root[1-#1+#1^3&,1,0],1}},{"E",{1,0,0}},{"F",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"G",{0,Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{0,0,1}},{"K",{1,Root[-1-#1+#1^3&,1,0],0}},{"L",{0,1,1}},{"M",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],0,1}},{"N",{0,1,0}}}}}
{{14,10},"ACDEAFGHBCIJBFKLCGKMDFMNDHILEGINEJLMHJKN",{{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{1,0,1}},{"D",{1,0,0}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,1,1}},{"H",{0,1,0}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,0}},{"M",{1,0,1}},{"N",{1,0,1}}},{{"A",{0,Root[-1+2 #1-3 #1^2+#1^3&,1,0],1}},{"B",{1,0,1}},{"C",{Root[-1+6 #1-11 #1^2+5 #1^3&,1,0],Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"D",{1,Root[5-#1+3 #1^2+#1^3&,1,0],0}},{"E",{Root[1-#1-4 #1^2+5 #1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"F",{0,0,1}},{"G",{0,1,1}},{"H",{0,1,0}},{"I",{1,Root[5+11 #1+8 #1^2+#1^3&,1,0],0}},{"J",{Root[-1+5 #1-8 #1^2+5 #1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"K",{Root[-1+5 #1-8 #1^2+5 #1^3&,1,0],0,1}},{"L",{1,0,0}},{"M",{Root[1-2 #1+3 #1^2+5 #1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"N",{Root[-1+5 #1-8 #1^2+5 #1^3&,1,0],Root[1-#1+#1^3&,1,0],1}}}}}
{{14,10},"ACDEAFGHBCIJBFKLCFMNDGIKDHJMEHKNEILMGJLN",{{{"A",{1,0,1}},{"B",{-1+1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,Ny/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,1}},{"F",{1,0,0}},{"G",{1/2 (-(2/Ny)+1/(1+Ny)-Sqrt[4/Ny^2+1/(1+Ny)^2]) if -1<Ny<0||Ny>0||Ny<-1,0,1}},{"H",{0,0,1}},{"I",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2 (1+Ny))/(Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"J",{0,-((2+Ny (3+2 Ny)+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/((1+Ny) (Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)]))) if -1<Ny<0||Ny>0||Ny<-1,1}},{"K",{-((2+Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny (Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)]))) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"L",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"M",{0,1,0}},{"N",{1,Ny,0}}},{{"A",{1,0,1}},{"B",{-1+1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,Ny/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,1}},{"F",{1,0,0}},{"G",{1/2 (-(2/Ny)+1/(1+Ny)+Sqrt[4/Ny^2+1/(1+Ny)^2]) if -1<Ny<0||Ny>0||Ny<-1,0,1}},{"H",{0,0,1}},{"I",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2 (1+Ny))/(Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"J",{0,(-2-Ny (3+2 Ny)+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/((1+Ny) (Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"K",{-((2+Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny (Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)]))) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"L",{1/(1+Ny) if -1<Ny<0||Ny>0||Ny<-1,-((2+Ny-Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])/(Ny+Sqrt[4+Ny (8+5 Ny)] Sign[Ny (1+Ny)])) if -1<Ny<0||Ny>0||Ny<-1,1}},{"M",{0,1,0}},{"N",{1,Ny,0}}},{{"A",{1,0,1}},{"B",{0,0,1}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{1,0,1}},{"F",{1,0,0}},{"G",{1/2,0,1}},{"H",{0,0,1}},{"I",{1,-1,1}},{"J",{0,0,1}},{"K",{1/2,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBKLNCEGKCFINDGLMEJMNFHJLHIKM",{{{"A",{1,0,0}},{"B",{-3,4,1}},{"C",{0,3/2,1}},{"D",{1,0,1}},{"E",{3,0,1}},{"F",{0,0,1}},{"G",{1,-(1/2),0}},{"H",{1,-(2/3),0}},{"I",{0,1,1}},{"J",{3,-2,1}},{"K",{-3,3,1}},{"L",{-3,2,1}},{"M",{3,-1,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDIJBKLNCEGKCFINDHKMEJMNFHJLGILM",{{{"A",{1,0,0}},{"B",{4,-3,1}},{"C",{0,3/2,1}},{"D",{1,0,1}},{"E",{2,0,1}},{"F",{0,0,1}},{"G",{1,-(3/4),0}},{"H",{1,-(1/2),0}},{"I",{0,1,1}},{"J",{2,-1,1}},{"K",{4,-(3/2),1}},{"L",{4,-2,1}},{"M",{2,-(1/2),1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCEJNCHLMDIMNEGKMFHKNFIJL",{{{"A",{0,1,0}},{"B",{1/8,1/2,1}},{"C",{2,-1,1}},{"D",{1,0,0}},{"E",{1,-(2/3),0}},{"F",{1,-2,0}},{"G",{0,2/3,1}},{"H",{0,1,1}},{"I",{0,0,1}},{"J",{-(1/4),1/2,1}},{"K",{1/4,1/2,1}},{"L",{-1,2,1}},{"M",{1,0,1}},{"N",{1/2,0,1}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCFINCGKLDLMNEHJLFGJMHIKM",{{{"A",{1,0,0}},{"B",{0,-1,1}},{"C",{1,-1,1}},{"D",{1/4,0,1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,-2,0}},{"H",{1,2,0}},{"I",{1,3,1}},{"J",{1/2,1,1}},{"K",{0,1,1}},{"L",{1/4,1/2,1}},{"M",{1/4,3/2,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCEJNCHLMDIMNEIKLFGJMFHKN",{{{"A",{0,1,0}},{"B",{3/4,1/2,1}},{"C",{4/3,1/3,1}},{"D",{1,0,0}},{"E",{1,1,0}},{"F",{1,-1,0}},{"G",{0,2,1}},{"H",{0,1,1}},{"I",{0,0,1}},{"J",{3/2,1/2,1}},{"K",{1/2,1/2,1}},{"L",{2/3,2/3,1}},{"M",{2,0,1}},{"N",{1,0,1}}}}}
{{14,10},"ABDEAFGNBHINCDJNCFKLDHKMEGIKELMNFIJMGHJL",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{1,0,1}},{"D",{1,0,1}},{"E",{1,0,1}},{"F",{1,-1,0}},{"G",{1,-1,0}},{"H",{0,1,1}},{"I",{0,1,1}},{"J",{1,0,1}},{"K",{0,1,1}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{0,1,0}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGMNEGILEHJMFJLNHIKN",{{{"A",{4/3,-1,1}},{"B",{-1,0,1}},{"C",{1,0,1}},{"D",{1/3,2,1}},{"E",{2/3,1,1}},{"F",{1,-(3/2),0}},{"G",{1/3,1/2,1}},{"H",{0,1,1}},{"I",{0,0,1}},{"J",{1,0,0}},{"K",{0,3/2,1}},{"L",{1,3/2,0}},{"M",{1/3,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGMNEFINEGJLHILMHJKN",{{{"A",{Ax,1,1}},{"B",{1,-1,0}},{"C",{1,0,0}},{"D",{0,1,1}},{"E",{0,1,1}},{"F",{0,0,1}},{"G",{Gx,1,1}},{"H",{0,0,1}},{"I",{0,1,0}},{"J",{1,0,0}},{"K",{1,0,1}},{"L",{0,1,1}},{"M",{0,0,1}},{"N",{0,0,1}}},{{"A",{0 if Cy!=0,1 if Cy!=0,1}},{"B",{1,-1 if Cy!=0,0}},{"C",{1,Cy,0}},{"D",{0 if Cy!=0,1 if Cy!=0,1}},{"E",{0,1,1}},{"F",{0,-Cy if Cy!=0,1}},{"G",{0 if Cy!=0,1,1}},{"H",{0 if Cy!=0,0,1}},{"I",{0,1,0}},{"J",{1,0,0}},{"K",{1,0,1}},{"L",{0 if Cy!=0,1,1}},{"M",{0 if Cy!=0,-Cy if Cy!=0,1}},{"N",{0,0,1}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCDMNCHJLEHKNEILMFGKMFIJN",{{{"A",{0,0,1}},{"B",{1,3/5,1}},{"C",{-(1/8),9/10,1}},{"D",{0,1,1}},{"E",{0,2/5,1}},{"F",{0,1,0}},{"G",{1,0,0}},{"H",{1,0,1}},{"I",{-(1/2),0,1}},{"J",{-(1/2),6/5,1}},{"K",{1,-(2/5),0}},{"L",{1/4,3/5,1}},{"M",{1,4/5,0}},{"N",{-(1/2),3/5,1}}}}}
{{14,10},"ABDEAFGNBHINCFHJCKLNDFKMDIJLEGIKEJMNGHLM",{{{"A",{0,1,1}},{"B",{0,0,1}},{"C",{1/2 (5+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"D",{0,1/2 (3-Sqrt[5]),1}},{"E",{0,1,0}},{"F",{1/2 (1-Sqrt[5]),1,1}},{"G",{1,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-3+Sqrt[5]),0}},{"K",{1,1/2 (1-Sqrt[5]),1}},{"L",{1/2 (3+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"M",{1,-1,0}},{"N",{1,0,0}}},{{"A",{0,1,1}},{"B",{0,0,1}},{"C",{1/2 (5-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"D",{0,1/2 (3+Sqrt[5]),1}},{"E",{0,1,0}},{"F",{1/2 (1+Sqrt[5]),1,1}},{"G",{1,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-3-Sqrt[5]),0}},{"K",{1,1/2 (1+Sqrt[5]),1}},{"L",{1/2 (3-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"M",{1,-1,0}},{"N",{1,0,0}}}}}
{{14,10},"AEFGAHIMBEMNBHJKCFJNCGLMDFKMDHLNEIJLGIKN",{{{"A",{0,0,1}},{"B",{1,1/2 (1+Sqrt[5]),0}},{"C",{1/2 (-1-Sqrt[5]),1,1}},{"D",{1/2 (3+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"E",{0,1,0}},{"F",{0,1/2 (1-Sqrt[5]),1}},{"G",{0,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-1-Sqrt[5]),1}},{"K",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"L",{1,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{1,1/2 (1-Sqrt[5]),0}},{"C",{1/2 (-1+Sqrt[5]),1,1}},{"D",{1/2 (3-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"E",{0,1,0}},{"F",{0,1/2 (1+Sqrt[5]),1}},{"G",{0,1,1}},{"H",{2,0,1}},{"I",{1,0,1}},{"J",{1,1/2 (-1+Sqrt[5]),1}},{"K",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"L",{1,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"AEFGAHIMBEMNBHJKCFJNCGKMDFLMDIKNEIJLGHLN",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{-(1/Sqrt[2]),3+2 Sqrt[2],1}},{"D",{1,6+4 Sqrt[2],1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{-(1/Sqrt[2]),0,1}},{"H",{1,2 (1+Sqrt[2]),0}},{"I",{1,4+3 Sqrt[2],0}},{"J",{1-1/Sqrt[2],1+Sqrt[2],1}},{"K",{-(1/Sqrt[2]),-1-Sqrt[2],1}},{"L",{1,4+3 Sqrt[2],1}},{"M",{0,1,0}},{"N",{0,2+Sqrt[2],1}}},{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1/Sqrt[2],3-2 Sqrt[2],1}},{"D",{1,6-4 Sqrt[2],1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1/Sqrt[2],0,1}},{"H",{1,2-2 Sqrt[2],0}},{"I",{1,4-3 Sqrt[2],0}},{"J",{1+1/Sqrt[2],1-Sqrt[2],1}},{"K",{1/Sqrt[2],-1+Sqrt[2],1}},{"L",{1,4-3 Sqrt[2],1}},{"M",{0,1,0}},{"N",{0,2-Sqrt[2],1}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGINEFLNEGJMHILMHJKN",{{{"A",{-1,1,1}},{"B",{1/2 (3-Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"C",{0,1,1}},{"D",{1/2 (1-Sqrt[5]),1,1}},{"E",{1,0,0}},{"F",{0,0,1}},{"G",{1,-1,0}},{"H",{1,-1,1}},{"I",{1,1/2 (1-Sqrt[5]),1}},{"J",{1,1/2 (-1-Sqrt[5]),0}},{"K",{0,1/2 (-1+Sqrt[5]),1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1/2 (3-Sqrt[5]),0,1}}},{{"A",{-1,1,1}},{"B",{1/2 (3+Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"C",{0,1,1}},{"D",{1/2 (1+Sqrt[5]),1,1}},{"E",{1,0,0}},{"F",{0,0,1}},{"G",{1,-1,0}},{"H",{1,-1,1}},{"I",{1,1/2 (1+Sqrt[5]),1}},{"J",{1,1/2 (-1+Sqrt[5]),0}},{"K",{0,1/2 (-1-Sqrt[5]),1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1/2 (3+Sqrt[5]),0,1}}}}}
{{14,10},"ACDEAFGHBCIJBDKLCFKMDGINEFLNEHIMGJLMHJKN",{{{"A",{0,0,1}},{"B",{Bx,1-Bx if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],1}},{"C",{0,1,1}},{"D",{0,1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],1}},{"E",{0,1,0}},{"F",{1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,-1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0}},{"J",{1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],1}},{"K",{1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],1}},{"L",{1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],1}},{"M",{1,-1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0}},{"N",{1 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],0 if Bx!=Root[1+2 #1+3 #1^2+#1^3&,1,0],1}}},{{"A",{0,0,1}},{"B",{Root[1+2 #1+3 #1^2+#1^3&,1,0],Root[-7+11 #1-6 #1^2+#1^3&,1,0],1}},{"C",{0,1,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,-1,0}},{"N",{1,0,1}}},{{"A",{0,0,1}},{"B",{Root[1+2 #1+3 #1^2+#1^3&,1,0],Root[5-4 #1-#1^2+#1^3&,1,0],1}},{"C",{0,1,1}},{"D",{0,Root[1-#1+#1^3&,1,0],1}},{"E",{0,1,0}},{"F",{Root[1-#1+#1^3&,1,0],0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,Root[-1-#1+#1^3&,1,0],0}},{"J",{Root[1-3 #1+2 #1^2+#1^3&,1,0],Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"K",{Root[1-2 #1+5 #1^2+#1^3&,1,0],Root[1-3 #1+2 #1^2+#1^3&,1,0],1}},{"L",{Root[1-#1+#1^3&,1,0],Root[1+#1+2 #1^2+#1^3&,1,0],1}},{"M",{1,Root[-1+#1^2+#1^3&,1,0],0}},{"N",{Root[1-#1+#1^3&,1,0],Root[1-3 #1+2 #1^2+#1^3&,1,0],1}}}}}
{{14,10},"ABDEAFGNBHINCFJKCHLMDGHJDKLNEFILEJMNGIKM",{{{"A",{0,1/2 (-1-Sqrt[5]),1}},{"B",{0,0,1}},{"C",{1/2 (5-Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"G",{1,1/2 (-1-Sqrt[5]),1}},{"H",{1,0,1}},{"I",{1/2 (-1+Sqrt[5]),0,1}},{"J",{1,1,1}},{"K",{1,-2-Sqrt[5],0}},{"L",{1,1/2 (-1-Sqrt[5]),0}},{"M",{1/2 (3-Sqrt[5]),1,1}},{"N",{1,0,0}}},{{"A",{0,1/2 (-1+Sqrt[5]),1}},{"B",{0,0,1}},{"C",{1/2 (5+Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"G",{1,1/2 (-1+Sqrt[5]),1}},{"H",{1,0,1}},{"I",{1/2 (-1-Sqrt[5]),0,1}},{"J",{1,1,1}},{"K",{1,-2+Sqrt[5],0}},{"L",{1,1/2 (-1+Sqrt[5]),0}},{"M",{1/2 (3+Sqrt[5]),1,1}},{"N",{1,0,0}}}}}
{{14,10},"ADENAFGHBDIJBFKNCEKLCGINDFLMEHIMGJKMHJLN",{{{"A",{0,0,1}},{"B",{1,0,0}},{"C",{1,0,1}},{"D",{0,0,1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,-1,0}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDGIBJKNCEHJCFLNDJLMEIMNFGKMHIKL",{{{"A",{2,0,1}},{"B",{1/3,1,1}},{"C",{-2,6,1}},{"D",{1,0,0}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,1,1}},{"H",{-1,3,1}},{"I",{0,1,1}},{"J",{1,-3,0}},{"K",{1,-1,1}},{"L",{1,-2,0}},{"M",{0,1,0}},{"N",{0,2,1}}},{{"A",{0,0,1}},{"B",{1,1,1}},{"C",{0,0,1}},{"D",{1,0,0}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,1,1}},{"H",{1,1,1}},{"I",{0,1,1}},{"J",{1,1,0}},{"K",{1,1,1}},{"L",{1,0,0}},{"M",{0,1,0}},{"N",{0,0,1}}}}}
{{14,10},"ABDEAFGNBHINCDFJCKLNDHKMEGHLEJMNFILMGIJK",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{4/3,-(2/5),1}},{"D",{1,0,1}},{"E",{2/3,0,1}},{"F",{1,-(6/5),0}},{"G",{1,-(9/10),0}},{"H",{0,3/5,1}},{"I",{0,1,1}},{"J",{2/3,2/5,1}},{"K",{4/3,-(1/5),1}},{"L",{4/3,-(3/5),1}},{"M",{2/3,1/5,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDEAFGNBHINCDFJCKLNDHKMEGIKEJMNFILMGHJL",{{{"A",{1,0,0}},{"B",{0,0,1}},{"C",{4,-6,1}},{"D",{1,0,1}},{"E",{2,0,1}},{"F",{1,-2,0}},{"G",{1,-(3/2),0}},{"H",{0,1,1}},{"I",{0,3,1}},{"J",{2,-2,1}},{"K",{4,-3,1}},{"L",{4,-5,1}},{"M",{2,-1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDEAFGHBIJNCFKNCILMDFJLDGMNEGIKEHLNHJKM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{Cx,1-Cx,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,-1,0}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{2,1/4 (1+Sqrt[5]),1}},{"D",{0,1/4 (1-Sqrt[5]),1}},{"E",{0,1,0}},{"F",{1/2 (1-Sqrt[5]),0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,1/4 (3+Sqrt[5]),1}},{"J",{1/2 (-1-Sqrt[5]),1/2,1}},{"K",{1,1/2,1}},{"L",{1,-(1/2),0}},{"M",{1/2 (3+Sqrt[5]),1/2,1}},{"N",{1,1/4 (-1+Sqrt[5]),0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{2,1/4 (1-Sqrt[5]),1}},{"D",{0,1/4 (1+Sqrt[5]),1}},{"E",{0,1,0}},{"F",{1/2 (1+Sqrt[5]),0,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,1/4 (3-Sqrt[5]),1}},{"J",{1/2 (-1+Sqrt[5]),1/2,1}},{"K",{1,1/2,1}},{"L",{1,-(1/2),0}},{"M",{1/2 (3-Sqrt[5]),1/2,1}},{"N",{1,1/4 (-1-Sqrt[5]),0}}}}}
{{14,10},"ABEMAFGNBHINCEFJCKMNDGHMDJLNEHKLFILMGIJK",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,-4,0}},{"D",{3/2,2,1}},{"E",{0,4,1}},{"F",{1,0,1}},{"G",{3/2,0,1}},{"H",{3/2,1,1}},{"I",{1,1,1}},{"J",{1/2,2,1}},{"K",{1,-2,0}},{"L",{1,2,1}},{"M",{0,1,0}},{"N",{1,0,0}}}}}
{{14,10},"ABEMAFGNBHINCFJKCHLMDFILDJMNEGHJEKLNGIKM",{{{"A",{0,1,0}},{"B",{1,-1-Sqrt[5],0}},{"C",{-2-Sqrt[5],3+Sqrt[5],1}},{"D",{1/2 (-1+Sqrt[5]),0,1}},{"E",{1,-2,0}},{"F",{0,1,1}},{"G",{0,2,1}},{"H",{1/2 (-1-Sqrt[5]),3+Sqrt[5],1}},{"I",{1/2 (1-Sqrt[5]),2,1}},{"J",{1,0,1}},{"K",{-1,2,1}},{"L",{1/2 (-3-Sqrt[5]),3+Sqrt[5],1}},{"M",{1,0,0}},{"N",{0,0,1}}},{{"A",{0,1,0}},{"B",{1,-1+Sqrt[5],0}},{"C",{-2+Sqrt[5],3-Sqrt[5],1}},{"D",{1/2 (-1-Sqrt[5]),0,1}},{"E",{1,-2,0}},{"F",{0,1,1}},{"G",{0,2,1}},{"H",{1/2 (-1+Sqrt[5]),3-Sqrt[5],1}},{"I",{1/2 (1+Sqrt[5]),2,1}},{"J",{1,0,1}},{"K",{-1,2,1}},{"L",{1/2 (-3+Sqrt[5]),3-Sqrt[5],1}},{"M",{1,0,0}},{"N",{0,0,1}}}}}
{{14,10},"ABLMAFGNBHINCFJLCHKMDGHLDJMNEFIMEKLNGIJK",{{{"A",{1,0,0}},{"B",{1/2 (1-Sqrt[5]),0,1}},{"C",{1/2 (3-Sqrt[5]),-1,1}},{"D",{0,1,1}},{"E",{1,1/2 (1+Sqrt[5]),1}},{"F",{1,1/2 (1+Sqrt[5]),0}},{"G",{1,-1,0}},{"H",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"I",{1/2 (1-Sqrt[5]),-1,1}},{"J",{0,1/2 (-1-Sqrt[5]),1}},{"K",{1,1/2 (-3-Sqrt[5]),1}},{"L",{1,0,1}},{"M",{0,0,1}},{"N",{0,1,0}}},{{"A",{1,0,0}},{"B",{1/2 (1+Sqrt[5]),0,1}},{"C",{1/2 (3+Sqrt[5]),-1,1}},{"D",{0,1,1}},{"E",{1,1/2 (1-Sqrt[5]),1}},{"F",{1,1/2 (1-Sqrt[5]),0}},{"G",{1,-1,0}},{"H",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"I",{1/2 (1+Sqrt[5]),-1,1}},{"J",{0,1/2 (-1+Sqrt[5]),1}},{"K",{1,1/2 (-3+Sqrt[5]),1}},{"L",{1,0,1}},{"M",{0,0,1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHNBDGIBJKNCDLNCEJMEHIKFHJLFIMNGKLM",{{{"A",{0,0,1}},{"B",{Root[-1-3 #1-2 #1^2+#1^3&,1,0],Root[1-#1^2+#1^3&,1,0],1}},{"C",{Root[1+2 #1-3 #1^2+#1^3&,1,0],1,1}},{"D",{0,1,1}},{"E",{0,Root[-1+2 #1-#1^2+#1^3&,1,0],1}},{"F",{0,1,0}},{"G",{Root[-1+#1-2 #1^2+#1^3&,1,0],0,1}},{"H",{1,0,1}},{"I",{1,Root[1+2 #1+#1^2+#1^3&,1,0],0}},{"J",{1,Root[1-#1^2+#1^3&,1,0],1}},{"K",{Root[-1+2 #1-3 #1^2+#1^3&,1,0],Root[1-#1^2+#1^3&,1,0],1}},{"L",{1,1,1}},{"M",{1,Root[1-#1+#1^3&,1,0],0}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCDGLCIMNEHJMFGKMFJLNHIKL",{{{"A",{0,0,1}},{"B",{1,Root[-1-#1+2 #1^2+#1^3&,2,0],0}},{"C",{Root[1-8 #1+5 #1^2+#1^3&,1,0],Root[1-#1-2 #1^2+#1^3&,3,0],1}},{"D",{0,Root[-1+5 #1-6 #1^2+#1^3&,1,0],1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{Root[1-2 #1-#1^2+#1^3&,1,0],0,1}},{"I",{Root[-1-9 #1+#1^2+#1^3&,1,0],Root[1-#1-2 #1^2+#1^3&,3,0],1}},{"J",{Root[1-2 #1-#1^2+#1^3&,1,0],1,1}},{"K",{1,-1,0}},{"L",{Root[-1-#1+2 #1^2+#1^3&,1,0],1,1}},{"M",{Root[1-2 #1-#1^2+#1^3&,1,0],Root[1-#1-2 #1^2+#1^3&,3,0],1}},{"N",{1,0,0}}},{{"A",{0,0,1}},{"B",{1,Root[-1-#1+2 #1^2+#1^3&,3,0],0}},{"C",{Root[1-8 #1+5 #1^2+#1^3&,2,0],Root[1-#1-2 #1^2+#1^3&,2,0],1}},{"D",{0,Root[-1+5 #1-6 #1^2+#1^3&,2,0],1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{Root[1-2 #1-#1^2+#1^3&,2,0],0,1}},{"I",{Root[-1-9 #1+#1^2+#1^3&,2,0],Root[1-#1-2 #1^2+#1^3&,2,0],1}},{"J",{Root[1-2 #1-#1^2+#1^3&,2,0],1,1}},{"K",{1,-1,0}},{"L",{Root[-1-#1+2 #1^2+#1^3&,2,0],1,1}},{"M",{Root[1-2 #1-#1^2+#1^3&,2,0],Root[1-#1-2 #1^2+#1^3&,2,0],1}},{"N",{1,0,0}}},{{"A",{0,0,1}},{"B",{1,Root[-1-#1+2 #1^2+#1^3&,1,0],0}},{"C",{Root[1-8 #1+5 #1^2+#1^3&,3,0],Root[1-#1-2 #1^2+#1^3&,1,0],1}},{"D",{0,Root[-1+5 #1-6 #1^2+#1^3&,3,0],1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{Root[1-2 #1-#1^2+#1^3&,3,0],0,1}},{"I",{Root[-1-9 #1+#1^2+#1^3&,3,0],Root[1-#1-2 #1^2+#1^3&,1,0],1}},{"J",{Root[1-2 #1-#1^2+#1^3&,3,0],1,1}},{"K",{1,-1,0}},{"L",{Root[-1-#1+2 #1^2+#1^3&,3,0],1,1}},{"M",{Root[1-2 #1-#1^2+#1^3&,3,0],Root[1-#1-2 #1^2+#1^3&,1,0],1}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCDGLCIMNEHLMFHIKFJLNGJKM",{{{"A",{1,Root[1-#1-2 #1^2+#1^3&,1,0],0}},{"B",{Root[1+3 #1-4 #1^2+#1^3&,2,0],Root[1-#1-2 #1^2+#1^3&,3,0],1}},{"C",{0,1,1}},{"D",{0,Root[-1-#1+2 #1^2+#1^3&,3,0],1}},{"E",{Root[-1-2 #1+#1^2+#1^3&,1,0],Root[1-#1-2 #1^2+#1^3&,3,0],1}},{"F",{1,0,1}},{"G",{0,1,0}},{"H",{1,Root[1-2 #1-#1^2+#1^3&,1,0],0}},{"I",{Root[-1+6 #1-5 #1^2+#1^3&,1,0],1,1}},{"J",{Root[1-#1-2 #1^2+#1^3&,1,0],0,1}},{"K",{Root[1-#1-2 #1^2+#1^3&,1,0],Root[1-#1-2 #1^2+#1^3&,3,0],1}},{"L",{0,0,1}},{"M",{Root[1-#1-2 #1^2+#1^3&,1,0],1,1}},{"N",{1,0,0}}},{{"A",{1,Root[1-#1-2 #1^2+#1^3&,2,0],0}},{"B",{Root[1+3 #1-4 #1^2+#1^3&,1,0],Root[1-#1-2 #1^2+#1^3&,1,0],1}},{"C",{0,1,1}},{"D",{0,Root[-1-#1+2 #1^2+#1^3&,2,0],1}},{"E",{Root[-1-2 #1+#1^2+#1^3&,2,0],Root[1-#1-2 #1^2+#1^3&,1,0],1}},{"F",{1,0,1}},{"G",{0,1,0}},{"H",{1,Root[1-2 #1-#1^2+#1^3&,3,0],0}},{"I",{Root[-1+6 #1-5 #1^2+#1^3&,2,0],1,1}},{"J",{Root[1-#1-2 #1^2+#1^3&,2,0],0,1}},{"K",{Root[1-#1-2 #1^2+#1^3&,2,0],Root[1-#1-2 #1^2+#1^3&,1,0],1}},{"L",{0,0,1}},{"M",{Root[1-#1-2 #1^2+#1^3&,2,0],1,1}},{"N",{1,0,0}}},{{"A",{1,Root[1-#1-2 #1^2+#1^3&,3,0],0}},{"B",{Root[1+3 #1-4 #1^2+#1^3&,3,0],Root[1-#1-2 #1^2+#1^3&,2,0],1}},{"C",{0,1,1}},{"D",{0,Root[-1-#1+2 #1^2+#1^3&,1,0],1}},{"E",{Root[-1-2 #1+#1^2+#1^3&,3,0],Root[1-#1-2 #1^2+#1^3&,2,0],1}},{"F",{1,0,1}},{"G",{0,1,0}},{"H",{1,Root[1-2 #1-#1^2+#1^3&,2,0],0}},{"I",{Root[-1+6 #1-5 #1^2+#1^3&,3,0],1,1}},{"J",{Root[1-#1-2 #1^2+#1^3&,3,0],0,1}},{"K",{Root[1-#1-2 #1^2+#1^3&,3,0],Root[1-#1-2 #1^2+#1^3&,2,0],1}},{"L",{0,0,1}},{"M",{Root[1-#1-2 #1^2+#1^3&,3,0],1,1}},{"N",{1,0,0}}}}}
{{14,10},"ADEFAGHNBDIJBEKNCFGKCILNDGLMEHJLFJMNHIKM",{{{"A",{1,0,0}},{"B",{1+1/Sqrt[2],-(1/Sqrt[2]),1}},{"C",{0,-Sqrt[2],1}},{"D",{-(1/Sqrt[2]),0,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,1,0}},{"H",{1,-1+Sqrt[2],0}},{"I",{-1-1/Sqrt[2],1-1/Sqrt[2],1}},{"J",{1-1/Sqrt[2],-1+1/Sqrt[2],1}},{"K",{0,1,1}},{"L",{-(1/Sqrt[2]),-(1/Sqrt[2]),1}},{"M",{-(1/Sqrt[2]),1/Sqrt[2],1}},{"N",{1,-1,0}}},{{"A",{1,0,0}},{"B",{1-1/Sqrt[2],1/Sqrt[2],1}},{"C",{0,Sqrt[2],1}},{"D",{1/Sqrt[2],0,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,1,0}},{"H",{1,-1-Sqrt[2],0}},{"I",{-1+1/Sqrt[2],1+1/Sqrt[2],1}},{"J",{1+1/Sqrt[2],-1-1/Sqrt[2],1}},{"K",{0,1,1}},{"L",{1/Sqrt[2],1/Sqrt[2],1}},{"M",{1/Sqrt[2],-(1/Sqrt[2]),1}},{"N",{1,-1,0}}}}}
{{14,10},"ABEFAGHMBIMNCEJNCFKMDGKNDJLMEGILFHLNHIJK",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,1/3,0}},{"D",{5/2,1/2,1}},{"E",{0,2/3,1}},{"F",{0,1,0}},{"G",{4,0,1}},{"H",{1,0,1}},{"I",{-2,1,1}},{"J",{-(1/2),1/2,1}},{"K",{1,-(1/3),0}},{"L",{1,1/2,1}},{"M",{1,0,0}},{"N",{1,1,1}}}}}
{{14,10},"ABEMAFGNBHINCFHJCKLNDEGKDJMNEIJLFIKMGHLM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{-5,2,1}},{"D",{1,2/3,0}},{"E",{0,4/3,1}},{"F",{1,0,1}},{"G",{-2,0,1}},{"H",{-2,1,1}},{"I",{1,1,1}},{"J",{1,-(1/3),0}},{"K",{1,2,1}},{"L",{-2,2,1}},{"M",{0,1,0}},{"N",{1,0,0}}}}}
{{14,10},"ACDEAFGHBCFIBDJKCGLMDHLNEGJNEIKLFKMNHIJM",{{{"A",{0,-1,1}},{"B",{1-1/Sqrt[2],1/Sqrt[2],1}},{"C",{1,0,1}},{"D",{1,1,0}},{"E",{2+Sqrt[2],1+Sqrt[2],1}},{"F",{0,1,1}},{"G",{0,0,1}},{"H",{0,1,0}},{"I",{-Sqrt[2],1+Sqrt[2],1}},{"J",{-Sqrt[2],-1,1}},{"K",{2,1+Sqrt[2],1}},{"L",{1,0,0}},{"M",{-Sqrt[2],0,1}},{"N",{1,1/Sqrt[2],0}}},{{"A",{0,-1,1}},{"B",{1+1/Sqrt[2],-(1/Sqrt[2]),1}},{"C",{1,0,1}},{"D",{1,1,0}},{"E",{2-Sqrt[2],1-Sqrt[2],1}},{"F",{0,1,1}},{"G",{0,0,1}},{"H",{0,1,0}},{"I",{Sqrt[2],1-Sqrt[2],1}},{"J",{Sqrt[2],-1,1}},{"K",{2,1-Sqrt[2],1}},{"L",{1,0,0}},{"M",{Sqrt[2],0,1}},{"N",{1,-(1/Sqrt[2]),0}}}}}
{{14,10},"ACDEAFGHBCFIBDJKCGLMDHLNEHJMEIKLFKMNGIJN",{{{"A",{Root[16-24 #1+8 #1^2+#1^3&,1,0],Root[-2+4 #1-4 #1^2+#1^3&,1,0],1}},{"B",{1,0,1}},{"C",{Root[2-6 #1+4 #1^2+#1^3&,1,0],Root[-2+4 #1-4 #1^2+#1^3&,1,0],1}},{"D",{1,0,0}},{"E",{Root[4+8 #1^2+#1^3&,1,0],Root[-2+4 #1-4 #1^2+#1^3&,1,0],1}},{"F",{0,Root[-2+6 #1-4 #1^2+#1^3&,1,0],1}},{"G",{Root[-4+8 #1-6 #1^2+#1^3&,1,0],Root[1+#1-#1^2+#1^3&,1,0],1}},{"H",{1,Root[1+6 #1+8 #1^2+4 #1^3&,1,0],0}},{"I",{Root[-4+8 #1-6 #1^2+#1^3&,1,0],Root[2+2 #1+2 #1^2+#1^3&,1,0],1}},{"J",{Root[-4+8 #1-6 #1^2+#1^3&,1,0],0,1}},{"K",{0,0,1}},{"L",{1,Root[1+4 #1+4 #1^2+2 #1^3&,1,0],0}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDEAFGNBHINCDFJCHKLDKMNEGIKEJLNFILMGHJM",{{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{0,0,1}},{"D",{0,0,1}},{"E",{-1,0,1}},{"F",{1,-1,0}},{"G",{1,0,0}},{"H",{1,1,1}},{"I",{1,0,1}},{"J",{-1,1,1}},{"K",{0,0,1}},{"L",{-1,2,1}},{"M",{0,1,1}},{"N",{0,1,0}}},{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{3/4,-3,1}},{"D",{0,0,1}},{"E",{1/2,0,1}},{"F",{1,-4,0}},{"G",{1,-6,0}},{"H",{1,-5,1}},{"I",{1,-3,1}},{"J",{1/2,-2,1}},{"K",{0,3,1}},{"L",{1/2,-1,1}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABFLAGHMBIMNCDLMCFJNDGKNEHLNEJKMFHIKGIJL",{{{"A",{0,0,1}},{"B",{0,3/2,1}},{"C",{3,-(1/2),1}},{"D",{3,-1,1}},{"E",{1,-(1/4),0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,1,1}},{"J",{1,1/2,1}},{"K",{-1,1,1}},{"L",{0,1,0}},{"M",{3,0,1}},{"N",{1,-(1/2),0}}}}}
{{14,10},"ABEMAFGHBIJNCFMNCIKLDGIMDHKNEFJKEGLNHJLM",{{{"A",{0,0,1}},{"B",{0,1/2 (5-Sqrt[5]),1}},{"C",{1,1/2 (-3+Sqrt[5]),0}},{"D",{1,1/2 (1-Sqrt[5]),1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1/2 (3-Sqrt[5]),0,1}},{"I",{1,1/2 (3-Sqrt[5]),1}},{"J",{1/2 (3-Sqrt[5]),1,1}},{"K",{1/2 (1-Sqrt[5]),1,1}},{"L",{1/2 (3-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"M",{0,1,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1/2 (5+Sqrt[5]),1}},{"C",{1,1/2 (-3-Sqrt[5]),0}},{"D",{1,1/2 (1+Sqrt[5]),1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1/2 (3+Sqrt[5]),0,1}},{"I",{1,1/2 (3+Sqrt[5]),1}},{"J",{1/2 (3+Sqrt[5]),1,1}},{"K",{1/2 (1+Sqrt[5]),1,1}},{"L",{1/2 (3+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"M",{0,1,0}},{"N",{1,-1,0}}}}}
{{14,10},"ADEFAGHIBDGJBHKNCDLNCIKMEGMNEJKLFHLMFIJN",{{{"A",{0,1,0}},{"B",{1/4,1/2,1}},{"C",{3/5,1/5,1}},{"D",{1,2,0}},{"E",{1,0,0}},{"F",{1,-1,0}},{"G",{0,0,1}},{"H",{0,1,1}},{"I",{0,1/2,1}},{"J",{1/6,1/3,1}},{"K",{1/3,1/3,1}},{"L",{2/3,1/3,1}},{"M",{1,0,1}},{"N",{1/2,0,1}}}}}
{{14,10},"ABFLACGMBHMNCILNDGJNDIKMEFKNEJLMFHIJGHKL",{{{"A",{0,0,1}},{"B",{0,2/3,1}},{"C",{-1,0,1}},{"D",{-3,4/3,1}},{"E",{1,1/3,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,2/3,1}},{"I",{-1,4/3,1}},{"J",{1,-(1/3),0}},{"K",{1,4/3,1}},{"L",{0,1,0}},{"M",{1,0,0}},{"N",{-1,2/3,1}}}}}
{{14,10},"ABDEAFGHBIJNCFIKCGLNDFMNDJKLEGJMEHKNHILM",{{{"A",{1/2,0,1}},{"B",{1,0,0}},{"C",{1/2 (3-Sqrt[5]),2 (-2+Sqrt[5]),1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (3-Sqrt[5]),-2+Sqrt[5],1}},{"H",{1,-1,1}},{"I",{1,1/2 (-5+Sqrt[5]),0}},{"J",{1,1/2 (-3+Sqrt[5]),0}},{"K",{1,1/2 (-3+Sqrt[5]),1}},{"L",{1/2 (3-Sqrt[5]),1/2 (-7+3 Sqrt[5]),1}},{"M",{0,1/2 (3-Sqrt[5]),1}},{"N",{0,1,0}}},{{"A",{1/2,0,1}},{"B",{1,0,0}},{"C",{1/2 (3+Sqrt[5]),-2 (2+Sqrt[5]),1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (3+Sqrt[5]),-2-Sqrt[5],1}},{"H",{1,-1,1}},{"I",{1,1/2 (-5-Sqrt[5]),0}},{"J",{1,1/2 (-3-Sqrt[5]),0}},{"K",{1,1/2 (-3-Sqrt[5]),1}},{"L",{1/2 (3+Sqrt[5]),1-3/2 (3+Sqrt[5]),1}},{"M",{0,1/2 (3+Sqrt[5]),1}},{"N",{0,1,0}}}}}
{{14,10},"ADEFAGHIBDJKBGLNCDMNCEHLEIJNFGJMFHKNIKLM",{{{"A",{0,0,1}},{"B",{1-By if -3<By<0||By>0||By<-3,By,1}},{"C",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"D",{0,1 if -3<By<0||By>0||By<-3,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1 if -3<By<0||By>0||By<-3,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"L",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"M",{1 if -3<By<0||By>0||By<-3,0 if -3<By<0||By>0||By<-3,1}},{"N",{1,-1 if -3<By<0||By>0||By<-3,0}}},{{"A",{0,0,1}},{"B",{-2,-3,1}},{"C",{-1,-6,1}},{"D",{0,-5,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{-1,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{-3,-2,1}},{"L",{-1,-2,1}},{"M",{3,-2,1}},{"N",{1,1,0}}},{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{4,-3,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{1/2,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1/2,0,1}},{"I",{1,0,0}},{"J",{1,-1,0}},{"K",{0,1,1}},{"L",{1/2,1,1}},{"M",{0,1,1}},{"N",{1,-2,0}}}}}
{{14,10},"AEFGAHIMBEHJBFMNCEKNCJLMDGKMDHLNFIKLGIJN",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1/3,1/6,1}},{"D",{1,-(3/2),1}},{"E",{1/2,0,1}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{1,-2,0}},{"I",{1,-(1/2),0}},{"J",{1/3,1/3,1}},{"K",{1,-(1/2),1}},{"L",{1/3,-(1/6),1}},{"M",{0,1,0}},{"N",{0,1/2,1}}}}}
{{14,10},"ABDEAFGHBIJNCFIKCGLNDFMNDHJLEHKNEILMGJKM",{{{"A",{1/4 (3-Sqrt[5]),0,1}},{"B",{1,0,0}},{"C",{1/2 (-1-Sqrt[5]),3+Sqrt[5],1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (-1-Sqrt[5]),5+2 Sqrt[5],1}},{"H",{1,-2-Sqrt[5],1}},{"I",{1,1/2 (-3-Sqrt[5]),0}},{"J",{1,-2-Sqrt[5],0}},{"K",{1,1/2 (-1-Sqrt[5]),1}},{"L",{1/2 (-1-Sqrt[5]),1/2 (7+3 Sqrt[5]),1}},{"M",{0,1/2 (3+Sqrt[5]),1}},{"N",{0,1,0}}},{{"A",{1/4 (3+Sqrt[5]),0,1}},{"B",{1,0,0}},{"C",{1/2 (-1+Sqrt[5]),3-Sqrt[5],1}},{"D",{0,0,1}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{1/2 (-1+Sqrt[5]),5-2 Sqrt[5],1}},{"H",{1,-2+Sqrt[5],1}},{"I",{1,1/2 (-3+Sqrt[5]),0}},{"J",{1,-2+Sqrt[5],0}},{"K",{1,1/2 (-1+Sqrt[5]),1}},{"L",{1/2 (-1+Sqrt[5]),1/2 (7-3 Sqrt[5]),1}},{"M",{0,1/2 (3-Sqrt[5]),1}},{"N",{0,1,0}}}}}
{{14,10},"ABEFACGMBHMNCIJNDEKNDILMEHJLFGLNFJKMGHIK",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{Lx if 5 Lx!=2,1-Lx if 5 Lx!=2,1}},{"E",{0,1 if 5 Lx!=2,1}},{"F",{0,1,1}},{"G",{1 if 5 Lx!=2,0,1}},{"H",{1,-1 if 5 Lx!=2,0}},{"I",{Lx if 5 Lx!=2,1-Lx if 5 Lx!=2,1}},{"J",{0 if 5 Lx!=2,1,1}},{"K",{0 if 5 Lx!=2,1,1}},{"L",{Lx,1-Lx if 5 Lx!=2,1}},{"M",{1,0,0}},{"N",{1,-1 if 5 Lx!=2,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{4/5,1/2,1}},{"E",{0,3/2,1}},{"F",{0,1,1}},{"G",{4/5,0,1}},{"H",{1,-(5/2),0}},{"I",{3/5,1/2,1}},{"J",{1/5,1,1}},{"K",{2/5,1,1}},{"L",{2/5,1/2,1}},{"M",{1,0,0}},{"N",{1,-(5/4),0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{2/5,3/5,1}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,-1,0}},{"I",{2/5,3/5,1}},{"J",{0,1,1}},{"K",{0,1,1}},{"L",{2/5,3/5,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ACDEBCFGBHINCJKNDFLNDHJMEGMNEHKLFIKMGIJL",{{{"A",{0,1,1}},{"B",{1+Ix-Mx if 2 Ix!=3,0,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{0,0 if 2 Ix!=3,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{Mx if 2 Ix!=3,0 if 2 Ix!=3,1}},{"I",{Ix,0 if 2 Ix!=3,1}},{"J",{Mx if 2 Ix!=3,0 if 2 Ix!=3,1}},{"K",{-1+Mx if 2 Ix!=3,0 if 2 Ix!=3,1}},{"L",{1,0 if 2 Ix!=3,0}},{"M",{Mx,0 if 2 Ix!=3,1}},{"N",{1,0 if 2 Ix!=3,0}}},{{"A",{0,1,1}},{"B",{2,0,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{0,-Ny,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1/2,-(1/2) (3 Ny),1}},{"I",{3/2,-(Ny/2),1}},{"J",{1/2,Ny/2,1}},{"K",{-(1/2),-(Ny/2),1}},{"L",{1,-Ny,0}},{"M",{1/2,-(Ny/2),1}},{"N",{1,Ny,0}}},{{"A",{0,1,1}},{"B",{5/2-Mx if 2 Mx!=1,0,1}},{"C",{0,0,1}},{"D",{0,1,0}},{"E",{0,0 if 2 Mx!=1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{Mx if 2 Mx!=1,0 if 2 Mx!=1,1}},{"I",{3/2 if 2 Mx!=1,0 if 2 Mx!=1,1}},{"J",{Mx if 2 Mx!=1,0 if 2 Mx!=1,1}},{"K",{-1+Mx if 2 Mx!=1,0 if 2 Mx!=1,1}},{"L",{1,0 if 2 Mx!=1,0}},{"M",{Mx,0 if 2 Mx!=1,1}},{"N",{1,0 if 2 Mx!=1,0}}}}}
{{14,10},"AEFGAHIMBEHJBFMNCEKNCJLMDGKMDIJNFIKLGHLN",{{{"A",{1,0,0}},{"B",{0,1,1}},{"C",{1/3,1/3,1}},{"D",{1/2,3/4,1}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{1/2,0,1}},{"H",{1,-1,0}},{"I",{1,1/2,0}},{"J",{1/3,2/3,1}},{"K",{1/2,1/4,1}},{"L",{1/3,1/6,1}},{"M",{0,1,0}},{"N",{0,1/2,1}}}}}
{{14,10},"ABCDAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN",{{{"A",{1/(Ky-Ky^2) if 0<Ky<1||Ky>1||Ky<0,1+1/(-Ky+Ky^2) if 0<Ky<1||Ky>1||Ky<0,1}},{"B",{1/(1-Ky)-Ky if 0<Ky<1||Ky>1||Ky<0,1+1/(-1+Ky)+Ky if 0<Ky<1||Ky>1||Ky<0,1}},{"C",{0,1,1}},{"D",{1,0,1}},{"E",{Ky/(-1+Ky) if 0<Ky<1||Ky>1||Ky<0,1+1/(-1+Ky)+Ky if 0<Ky<1||Ky>1||Ky<0,1}},{"F",{1,-1+Ky if 0<Ky<1||Ky>1||Ky<0,0}},{"G",{0,Ky/(-1+Ky) if 0<Ky<1||Ky>1||Ky<0,1}},{"H",{1,0,0}},{"I",{1,1+1/(-1+Ky)+Ky if 0<Ky<1||Ky>1||Ky<0,1}},{"J",{1/(1-Ky) if 0<Ky<1||Ky>1||Ky<0,0,1}},{"K",{1,Ky,1}},{"L",{0,0,1}},{"M",{0,1,0}},{"N",{1,Ky if 0<Ky<1||Ky>1||Ky<0,0}}}}}
{{14,10},"ABEFAGHMBIMNCDJMCEKNDGLNEHILFHJNFKLMGIJK",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{3,-1,1}},{"D",{5/2,-1,1}},{"E",{0,2,1}},{"F",{0,1,1}},{"G",{3/2,0,1}},{"H",{1,0,1}},{"I",{1,-2,0}},{"J",{2,-1,1}},{"K",{1,1,1}},{"L",{1/2,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ABEMAFGNBHINCEFJCHKMDGIKDJMNEKLNFILMGHJL",{{{"A",{1,0,0}},{"B",{1,0,1}},{"C",{0,1,1}},{"D",{1,-(2/3),1}},{"E",{0,0,1}},{"F",{0,1,0}},{"G",{1,-(8/3),0}},{"H",{-(1/2),2,1}},{"I",{1/2,2/3,1}},{"J",{0,2/3,1}},{"K",{3/2,-2,1}},{"L",{1/2,-(2/3),1}},{"M",{1/2,0,1}},{"N",{1,-(4/3),0}}}}}
{{14,10},"ABFLAGHMBIMNCFJNCGILDFKMDHLNEGKNEJLMHIJK",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{Cx,1-Cx if 1+Cx!=0,1}},{"D",{0 if 1+Cx!=0,1 if 1+Cx!=0,1}},{"E",{0 if 1+Cx!=0,1,1}},{"F",{0,1 if 1+Cx!=0,1}},{"G",{1,0,1}},{"H",{1 if 1+Cx!=0,0,1}},{"I",{1,-1,0}},{"J",{0 if 1+Cx!=0,1,1}},{"K",{0 if 1+Cx!=0,1 if 1+Cx!=0,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-1 if 1+Cx!=0,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{-1,2,1}},{"D",{2/3,-1,1}},{"E",{2/3,1,1}},{"F",{0,-1,1}},{"G",{1,0,1}},{"H",{1/3,0,1}},{"I",{1,-1,0}},{"J",{-(2/3),1,1}},{"K",{4/3,-1,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-3,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{-1,2,1}},{"D",{0,1,1}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{0,1,1}},{"K",{0,1,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ABEMAFGHBIJNCFIKCGMNDFLNDJKMEGJLEHKNHILM",{{{"A",{0,0,1}},{"B",{0,1/2 (5-Sqrt[5]),1}},{"C",{1,-3+Sqrt[5],0}},{"D",{1/4 (3-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{1,0,0}},{"H",{1/2,0,1}},{"I",{1/2,1/2 (3-Sqrt[5]),1}},{"J",{1/4 (3-Sqrt[5]),1,1}},{"K",{1/4 (3-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"L",{1/2,1,1}},{"M",{0,1,0}},{"N",{1,-2,0}}},{{"A",{0,0,1}},{"B",{0,1/2 (5+Sqrt[5]),1}},{"C",{1,-3-Sqrt[5],0}},{"D",{1/4 (3+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{1,0,0}},{"H",{1/2,0,1}},{"I",{1/2,1/2 (3+Sqrt[5]),1}},{"J",{1/4 (3+Sqrt[5]),1,1}},{"K",{1/4 (3+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"L",{1/2,1,1}},{"M",{0,1,0}},{"N",{1,-2,0}}}}}
{{14,10},"ABDNAEFGBHIJCEKLCFHNDGIKDHLMEIMNFJKMGJLN",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{1,0,0}},{"F",{1,0,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{1,-1,0}},{"N",{0,1,0}}}}}
{{14,10},"ABEFACGMBHMNCIJNDEKNDHILEJLMFGLNFIKMGHJK",{{{"A",{0,0,1}},{"B",{0,1/2,1}},{"C",{1,0,1}},{"D",{2/3,3/4,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{4/3,0,1}},{"H",{1,1/2,1}},{"I",{1/3,1,1}},{"J",{1,-(3/2),0}},{"K",{2/3,1,1}},{"L",{1,-(3/4),0}},{"M",{1,0,0}},{"N",{2/3,1/2,1}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{0,1,1}},{"I",{0,1,1}},{"J",{1,-1,0}},{"K",{0,1,1}},{"L",{1,-1,0}},{"M",{1,0,0}},{"N",{0,1,1}}}}}
{{14,10},"ABDNAEFGBEHICFJKCHLNDGJLDHKMEJMNFILMGIKN",{{{"A",{0,0,1}},{"B",{0,0,1}},{"C",{1,0,0}},{"D",{0,1,1}},{"E",{0,0,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,0}},{"I",{1,0,1}},{"J",{0,1,1}},{"K",{1,1,1}},{"L",{1,-1,0}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABEFAGHMBIMNCDJNCGIKDELMEHKNFGLNFJKMHIJL",{{{"A",{1,0,0}},{"B",{1/2,0,1}},{"C",{3/4,-(5/4),1}},{"D",{0,1,1}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{1,1,0}},{"H",{1,-1,0}},{"I",{1/2,-(3/2),1}},{"J",{1,-2,1}},{"K",{1,-1,1}},{"L",{0,-1,1}},{"M",{0,1,0}},{"N",{1/2,-(1/2),1}}}}}
{{14,10},"ABMNAEFGBEHICFJMCGKNDHKMDIJNEJKLFHLNGILM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1/2 (1-2 Ky-Sqrt[1+4 Ky^2]),1/2 (1-Sqrt[1+4 Ky^2]),1}},{"D",{1/2 (1+2 Ky+Sqrt[1+4 Ky^2]),-Ky-Sqrt[1+4 Ky^2],1}},{"E",{1,0,1}},{"F",{1,0,0}},{"G",{1/2 (1-2 Ky-Sqrt[1+4 Ky^2]),0,1}},{"H",{1,-1,0}},{"I",{1/2 (1+2 Ky+Sqrt[1+4 Ky^2]),1/2 (1-2 Ky-Sqrt[1+4 Ky^2]),1}},{"J",{1/2 (1+2 Ky+Sqrt[1+4 Ky^2]),1/2 (1-Sqrt[1+4 Ky^2]),1}},{"K",{1/2 (1-2 Ky-Sqrt[1+4 Ky^2]),Ky,1}},{"L",{1,1/2 (-1-2 Ky+Sqrt[1+4 Ky^2]),0}},{"M",{0,1/2 (1-Sqrt[1+4 Ky^2]),1}},{"N",{0,1,0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1/2 (1-2 Ky+Sqrt[1+4 Ky^2]),1/2 (1+Sqrt[1+4 Ky^2]),1}},{"D",{1/2+Ky-1/2 Sqrt[1+4 Ky^2],-Ky+Sqrt[1+4 Ky^2],1}},{"E",{1,0,1}},{"F",{1,0,0}},{"G",{1/2 (1-2 Ky+Sqrt[1+4 Ky^2]),0,1}},{"H",{1,-1,0}},{"I",{1/2+Ky-1/2 Sqrt[1+4 Ky^2],1/2 (1-2 Ky+Sqrt[1+4 Ky^2]),1}},{"J",{1/2+Ky-1/2 Sqrt[1+4 Ky^2],1/2 (1+Sqrt[1+4 Ky^2]),1}},{"K",{1/2 (1-2 Ky+Sqrt[1+4 Ky^2]),Ky,1}},{"L",{1,1/2 (-1-2 Ky-Sqrt[1+4 Ky^2]),0}},{"M",{0,1/2 (1+Sqrt[1+4 Ky^2]),1}},{"N",{0,1,0}}}}}
{{14,10},"AEFGAHIMBEHJBFKNCEMNCIKLDGKMDIJNFJLMGHLN",{{{"A",{0,0,1}},{"B",{Ky/(1+Ky) if 1+Ky!=0,1-Ky if 1+Ky!=0,1}},{"C",{1,1/2 (-1-Ky) if 1+Ky!=0,0}},{"D",{1/(1+Ky) if 1+Ky!=0,Ky if 1+Ky!=0,1}},{"E",{0,1,0}},{"F",{0,1,1}},{"G",{0,Ky if 1+Ky!=0,1}},{"H",{Ky/(1+Ky) if 1+Ky!=0,0,1}},{"I",{1,0,1}},{"J",{Ky/(1+Ky) if 1+Ky!=0,1,1}},{"K",{-1+2/(1+Ky) if 1+Ky!=0,Ky,1}},{"L",{(-1+Ky)/(1+Ky) if 1+Ky!=0,1,1}},{"M",{1,0,0}},{"N",{1,-1-Ky if 1+Ky!=0,0}}}}}
{{14,10},"ABDEAFGHBIJNCDIKCFLNDGMNEGJLEHKNFJKMHILM",{{{"A",{1,0,1}},{"B",{1,0,0}},{"C",{8/3,-4,1}},{"D",{0,0,1}},{"E",{4/3,0,1}},{"F",{8/3,-5,1}},{"G",{0,3,1}},{"H",{4/3,-1,1}},{"I",{1,-(3/2),0}},{"J",{1,-(9/4),0}},{"K",{4/3,-2,1}},{"L",{8/3,-3,1}},{"M",{0,1,1}},{"N",{0,1,0}}}}}
{{14,10},"ABDNAEFGBEHICFJKCGLMDHJLDIKMEKLNFHMNGIJN",{{{"A",{-(Gy^2/(1+Gy)) if 1+Gy!=0,Gy+1/(1+Gy) if 1+Gy!=0,1}},{"B",{0,1,1}},{"C",{-Gy-1/(1+Gy) if 1+Gy!=0,Gy if 1+Gy!=0,1}},{"D",{1,0,1}},{"E",{0,1,0}},{"F",{-(Gy^2/(1+Gy)) if 1+Gy!=0,Gy^2/(1+Gy) if 1+Gy!=0,1}},{"G",{-(Gy^2/(1+Gy)) if 1+Gy!=0,Gy,1}},{"H",{0,0,1}},{"I",{0,Gy/(1+Gy) if 1+Gy!=0,1}},{"J",{Gy/(1+Gy) if 1+Gy!=0,0,1}},{"K",{1,-1+1/(1+Gy) if 1+Gy!=0,0}},{"L",{1,0,0}},{"M",{-Gy if 1+Gy!=0,Gy if 1+Gy!=0,1}},{"N",{1,-1,0}}}}}
{{14,10},"ADEFAGHIBDGJBHKNCEKLCFJNDILNEGMNFHLMIJKM",{{{"A",{0,0,1}},{"B",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"C",{1-Cy if 3 Cy!=4,Cy,1}},{"D",{0,1,0}},{"E",{0,1 if 3 Cy!=4,1}},{"F",{0,1,1}},{"G",{1 if 3 Cy!=4,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"K",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"L",{1,-1,0}},{"M",{1 if 3 Cy!=4,0 if 3 Cy!=4,1}},{"N",{1,-1 if 3 Cy!=4,0}}},{{"A",{0,0,1}},{"B",{1,0,1}},{"C",{-(1/3),4/3,1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,-1,0}},{"M",{1,0,1}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{4/3,-(1/6),1}},{"C",{-(2/3),4/3,1}},{"D",{0,1,0}},{"E",{0,2/3,1}},{"F",{0,1,1}},{"G",{4/3,0,1}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{4/3,1/3,1}},{"K",{1/3,1/3,1}},{"L",{1,-1,0}},{"M",{2/3,1/3,1}},{"N",{1,-(1/2),0}}}}}
{{14,10},"ABFLAGHMBIMNCDLNCGIJDFKMEGKNEJLMFHJNHIKL",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{Cx,1-Cx if Cx!=1,1}},{"D",{0 if Cx!=1,1,1}},{"E",{0 if Cx!=1,1 if Cx!=1,1}},{"F",{0,1,1}},{"G",{1 if Cx!=1,0,1}},{"H",{1,0,1}},{"I",{1,-1 if Cx!=1,0}},{"J",{0 if Cx!=1,1 if Cx!=1,1}},{"K",{0 if Cx!=1,1,1}},{"L",{0,1 if Cx!=1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,0,1}},{"D",{0,1,1}},{"E",{0,1,1}},{"F",{0,1,1}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,-1,0}},{"J",{0,1,1}},{"K",{0,1,1}},{"L",{0,1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{1,-2,1}},{"D",{-2,1,1}},{"E",{4,-1,1}},{"F",{0,1,1}},{"G",{3,0,1}},{"H",{1,0,1}},{"I",{1,1,0}},{"J",{2,-1,1}},{"K",{2,1,1}},{"L",{0,-1,1}},{"M",{1,0,0}},{"N",{1,-1,0}}}}}
{{14,10},"ABEMAFGHBIJNCEIKCFMNDGKNDHJMEHLNFJKLGILM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,-1,0}},{"D",{1,0,1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,-1,0}}},{{"A",{0,0,1}},{"B",{0,5/3,1}},{"C",{1,1/3,0}},{"D",{3,-(2/3),1}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{3,0,1}},{"I",{1,4/3,1}},{"J",{3,2/3,1}},{"K",{-1,2/3,1}},{"L",{1,2/3,1}},{"M",{0,1,0}},{"N",{1,-(1/3),0}}}}}
{{14,10},"ABLMAFGHBIJNCFKNCGILDFJMDHLNEGMNEJKLHIKM",{{{"A",{0,1,0}},{"B",{1,-(1/2),0}},{"C",{1/2 (-1+Sqrt[5]),1,1}},{"D",{1/2 (3+Sqrt[5]),0,1}},{"E",{1/2 (3+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"F",{0,1/2 (3+Sqrt[5]),1}},{"G",{0,1,1}},{"H",{0,0,1}},{"I",{-1,1,1}},{"J",{2+Sqrt[5],1/2 (-1-Sqrt[5]),1}},{"K",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"L",{1,0,0}},{"M",{1,-1,0}},{"N",{1,0,1}}},{{"A",{0,1,0}},{"B",{1,-(1/2),0}},{"C",{1/2 (-1-Sqrt[5]),1,1}},{"D",{1/2 (3-Sqrt[5]),0,1}},{"E",{1/2 (3-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"F",{0,1/2 (3-Sqrt[5]),1}},{"G",{0,1,1}},{"H",{0,0,1}},{"I",{-1,1,1}},{"J",{2-Sqrt[5],1/2 (-1+Sqrt[5]),1}},{"K",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"L",{1,0,0}},{"M",{1,-1,0}},{"N",{1,0,1}}}}}
{{14,10},"ABEMAFGHBIJNCFIKCGLNDEJLDFMNEHKNGJKMHILM",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{3,2/3,1}},{"D",{1,1,0}},{"E",{0,1/3,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{-1,0,1}},{"I",{-1,2/3,1}},{"J",{1,4/3,1}},{"K",{1,2/3,1}},{"L",{-1,-(2/3),1}},{"M",{0,1,0}},{"N",{1,1/3,0}}},{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,-1,0}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,0,1}},{"H",{1,0,1}},{"I",{1,0,1}},{"J",{1,0,1}},{"K",{1,0,1}},{"L",{1,0,1}},{"M",{0,1,0}},{"N",{1,-1,0}}}}}
{{14,10},"AELMBEFGBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL",{{{"A",{1,Ay,0}},{"B",{0,1/2,1}},{"C",{1,0,1}},{"D",{1,-1,1}},{"E",{0,1,0}},{"F",{0,0,1}},{"G",{0,1,1}},{"H",{3/2,-1,1}},{"I",{-(1/2),1,1}},{"J",{1/2,1,1}},{"K",{1/2,-1,1}},{"L",{1,0,0}},{"M",{1,-2,0}},{"N",{1/2,0,1}}}}}
{{14,10},"ABEFAGHIBGMNCDJMCEKNDHLNEILMFHKMFIJNGJKL",{{{"A",{0,0,1}},{"B",{0,3/2,1}},{"C",{1/2,3/4,1}},{"D",{3/4,1/2,1}},{"E",{0,1,1}},{"F",{0,1,0}},{"G",{3/2,0,1}},{"H",{1,0,0}},{"I",{1,0,1}},{"J",{1,1/4,1}},{"K",{1,-(1/2),0}},{"L",{1/2,1/2,1}},{"M",{1,-1,0}},{"N",{1,1/2,1}}}}}
{{14,10},"ABGKACLMBHINCJKNDELNDHJMEIKMFGMNFHKLGIJL",{{{"A",{0,0,1}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{3/2,1/3,1}},{"E",{1,-(2/3),0}},{"F",{2,2/3,1}},{"G",{0,2/3,1}},{"H",{2,1/3,1}},{"I",{1,-(1/3),0}},{"J",{1,1/3,1}},{"K",{0,1,0}},{"L",{2,0,1}},{"M",{1,0,0}},{"N",{1,2/3,1}}}}}
{{14,10},"AEFGBELMBHINCFLNCHJMDGMNDHKLEJKNFIKMGIJL",{{{"A",{1,Ay,0}},{"B",{0,1/2,1}},{"C",{1,0,1}},{"D",{1,1/2,1}},{"E",{0,1,0}},{"F",{1,0,0}},{"G",{1,-(1/2),0}},{"H",{2/3,1/3,1}},{"I",{-2,1,1}},{"J",{2,-1,1}},{"K",{2,1,1}},{"L",{0,0,1}},{"M",{0,1,1}},{"N",{2,0,1}}}}}
{{14,10},"ABFLAGHIBGMNCDLMCFJNDHKNEHJMEILNFIKMGJKL",{{{"A",{0,0,1}},{"B",{0,1,0}},{"C",{-(2/3),3/2,1}},{"D",{-(1/3),1,1}},{"E",{4/3,-(1/2),1}},{"F",{0,1,1}},{"G",{1,0,0}},{"H",{1,0,1}},{"I",{2/3,0,1}},{"J",{2/3,1/2,1}},{"K",{1/3,1/2,1}},{"L",{0,1/2,1}},{"M",{1,-(3/2),0}},{"N",{1,-(3/4),0}}}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:47:04 | 显示全部楼层
15棵树的情况也比较复杂,有12行的整数/实数解和13行的复数解
  1. print(ACDHDFIJEGHKCEFLABJLBCGMAIKMBDENAFGNBHIOCJKOLMNO);
  2. solve([+1-2*O_Y-1*O_X*O_Y+1*O_Y*O_Y,+1*O_X+1*O_X*O_X-2*O_Y-2*O_X*O_Y+1*O_Y*O_Y,-1+1*N_Y+1*O_Y,-1+1*L_X-1*O_X,+1+1*M_X-1*O_Y,-1+1*J_X-1*O_X+1*O_Y,+1*N_X-1*O_Y,-1+1*D_Y-1*O_X+1*O_Y,+1*I_Y+1*O_X-1*O_Y,-1+1*M_Y,+1*B_X-1*O_X,+1*I_X-1*O_X,+1*J_Y-1*O_Y,+1*K_Y-1*O_Y,-1+1*B_Y,+1+1*A_Y],[O_X,O_Y,N_Y,L_X,M_X,J_X,N_X,D_Y,I_Y,M_Y,B_X,I_X,J_Y,K_Y,B_Y,A_Y]);
  3. print("A=(1,A_y,0) C=(1,0,0) D=(1,D_y,0) E_x=0 E_y=0 F_x=1 F_y=0 G_x=0 G_y=1 H=(0,1,0) K_x=0 L_y=0 ");
  4. print(ACDIBEFIBDHJDFGLAEKLABGMCEJMAFHNBCKNCGHOIJKOLMNO);
  5. solve([+1-5/4*O_X+1/2*N_Y*O_X+1/2*O_X*O_X,+1*N_Y-5/8*O_X-3/4*N_Y*O_X+1/4*O_X*O_X,+1*N_Y*N_Y+9/16*O_X-1/8*N_Y*O_X-5/8*O_X*O_X,-3/2+1*L_Y+1*N_Y+1*O_X,+1*H_Y-2*N_Y,+1+1*M_Y,+1*G_Y+2*N_Y,+1*F_Y+1*N_Y,-2+1*M_X,-1/2+1*L_X-1*N_Y-1*O_X,-1+1*N_X,-2+1*G_X,-1+1*K_X,-1+1*K_Y,-1+1*O_Y,+1+1*E_Y,-2+1*A_X],[N_Y,O_X,L_Y,H_Y,M_Y,G_Y,F_Y,M_X,L_X,N_X,G_X,K_X,K_Y,O_Y,E_Y,A_X]);
  6. print("A_y=0 B=(0,1,0) C_x=1 C_y=0 D_x=0 D_y=0 E=(1,E_y,0) F=(1,F_y,0) H_x=0 I=(1,0,0) J_x=0 J_y=1 ");
  7. print(ADEFBFGICEHIACGKBEJKABHLCFJLDGHMAIJMBCDNDKLOEMNO);
  8. solve([+1/2+1*O_Y,+1+1*H_X,-2+1*K_X,-7/2+1*O_X,-2+1*L_Y,+1/2+1*M_X,+1+1*G_Y,-3/2+1*N_X,-1+1*K_Y,-1+1*J_X,+1+1*D_Y,-1+1*J_Y,-1+1*A_Y,-1+1*L_X,+1/2+1*N_Y,+1/2+1*M_Y],[O_Y,H_X,K_X,O_X,L_Y,M_X,G_Y,N_X,K_Y,J_X,D_Y,J_Y,A_Y,L_X,N_Y,M_Y]);
  9. print("A=(1,A_y,0) B_x=0 B_y=1 C_x=1 C_y=0 D=(1,D_y,0) E=(1,0,0) F=(0,1,0) G_x=0 H_y=0 I_x=0 I_y=0 ");
  10. print(ADEGBCEIDFHICFGJABFKEHJKBGHLAIJMACLNBDMNCDKOELMO);
  11. solve([+1-1*N_Y+1*N_Y*N_Y,+1*N_X+1*N_Y,-1+1*J_Y+1*N_Y,+1+1*O_X,-1+1*L_Y-1*N_Y,+1*K_X-1*N_Y,+1*A_Y+1*N_Y,+1+1*G_Y,+1*J_X-1*N_Y,+1*H_X-1*N_Y,+1*M_Y-1*N_Y,+1*B_Y-1*N_Y,-1+1*O_Y,-1+1*K_Y,+1+1*M_X,+1+1*L_X],[N_Y,N_X,J_Y,O_X,L_Y,K_X,A_Y,G_Y,J_X,H_X,M_Y,B_Y,O_Y,K_Y,M_X,L_X]);
  12. print("A=(1,A_y,0) B_x=0 C_x=0 C_y=1 D=(1,0,0) E=(0,1,0) F_x=1 F_y=0 G=(1,G_y,0) H_y=0 I_x=0 I_y=0 ");
  13. print(ADEGBDFICEFJCDHKCGILBEHMAFKMBGJNAHLNAIJOBKLOCMNO);
  14. solve([+1-1*M_Y*N_Y+1*N_Y*N_Y,+1*M_Y-1*M_X*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*M_X*M_Y+1*M_Y*N_Y-1*N_Y*N_Y-1*M_X*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*M_Y*M_Y-1*M_Y*N_Y+1*O_Y,+1*N_Y-1*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*M_X*N_Y+1*M_Y*N_Y-1*N_Y*N_Y+1*O_Y-1*M_X*O_Y-1*M_Y*O_Y+1*N_Y*O_Y,+1*C_X+1*M_Y-1*N_Y,-1+1*H_Y-1*M_Y,+1*F_Y-1*M_Y+1*O_Y,+1*B_X-1*M_X-1*M_Y+1*N_Y,+1*J_Y-1*N_Y,+1*K_Y-1*M_Y+1*N_Y,-1+1*H_X,-1+1*N_X,+1*F_X-1*M_X,+1*B_Y-1*M_Y+1*O_Y,+1*K_X-1*M_X,+1*D_Y-1*M_Y+1*O_Y],[M_X,M_Y,N_Y,O_Y,C_X,H_Y,F_Y,B_X,J_Y,K_Y,H_X,N_X,F_X,B_Y,K_X,D_Y]);
  15. print("A=(0,1,0) C_y=0 D_x=0 E_x=0 E_y=1 G_x=0 G_y=0 I=(1,0,0) J=(1,J_y,0) L_x=1 L_y=0 O=(1,O_y,0) ");
  16. print(ADEGBFGICEHIACFKBEJKABHLCGJLDFHMAIJMBCDNDKLOEFNO);
  17. solve([+1/2+1*M_Y,+1+1*H_X,-2+1*K_X,-4+1*O_X,-2+1*L_Y,+1+1*O_Y,+1/2+1*M_X,-2+1*N_X,-1+1*K_Y,-1+1*J_X,+1+1*D_Y,-1+1*J_Y,-1+1*A_Y,-1+1*L_X,+1+1*N_Y,+1+1*F_Y],[M_Y,H_X,K_X,O_X,L_Y,O_Y,M_X,N_X,K_Y,J_X,D_Y,J_Y,A_Y,L_X,N_Y,F_Y]);
  18. print("A=(1,A_y,0) B_x=0 B_y=1 C_x=1 C_y=0 D=(1,D_y,0) E=(1,0,0) F_x=0 G=(0,1,0) H_y=0 I_x=0 I_y=0 ");
  19. print(ADEHBCFHDFGICEGJABGKHIJKBEIMACLMAFJNBDLNCDKOEFLO);
  20. solve([+1+1*O_Y+1*O_Y*O_Y,+1*M_Y-1*O_Y,-2+1*M_X-1*O_Y,+1*K_X+1*O_Y,-1+1*O_X-1*O_Y,+1*N_Y-1*O_Y,+1+1*L_Y,+1*G_Y+1*O_Y,-1+1*C_Y-1*O_Y,-1+1*J_X,+1*B_Y-1*O_Y,-1+1*J_Y,-1+1*K_Y,-1+1*N_X,-1+1*L_X-1*O_Y,-1+1*E_X-1*O_Y],[O_Y,M_Y,M_X,K_X,O_X,N_Y,L_Y,G_Y,C_Y,J_X,B_Y,J_Y,K_Y,N_X,L_X,E_X]);
  21. print("A_x=1 A_y=0 B=(1,B_y,0) C=(1,C_y,0) D_x=0 D_y=0 E_y=0 F=(0,1,0) G_x=0 H=(1,0,0) I_x=0 I_y=1 ");
  22. print(ADEHBEGIBDFJAFGLCDILCEFMABKMACJNGHKNBCHOIJKOLMNO);
  23. solve([+1-1*L_Y*N_X-1*N_Y+1*M_X*N_Y-1*O_X+1*L_Y*O_X-1*N_Y*O_X+1*O_Y-1*M_X*O_Y+1*N_X*O_Y,+1*K_Y-1*L_Y*L_Y-1*L_Y*O_X-1*O_Y,+1*L_X+1*L_Y*M_X-1*L_Y*N_X+1*L_X*N_Y-1*O_X-1*N_Y*O_X-1*M_X*O_Y+1*N_X*O_Y,+1*L_Y-1*L_Y*O_X-1*O_Y,+1*H_Y*L_Y+1*L_Y*L_Y-1*L_Y*N_X-1*N_Y+1*M_X*N_Y-1*O_X+2*L_Y*O_X-1*N_Y*O_X+2*O_Y-1*M_X*O_Y+1*N_X*O_Y,+1*L_X*L_Y-1*L_Y*M_X-1*N_Y-1*L_X*N_Y+1*M_X*N_Y+2*L_Y*O_X+2*O_Y,+1*M_X+1*L_Y*M_X-1*L_Y*N_X-1*N_Y+1*M_X*N_Y-1*O_X+1*L_Y*O_X-1*N_Y*O_X+1*O_Y-1*M_X*O_Y+1*N_X*O_Y,+1*H_Y*M_X-1*L_Y*O_X-1*O_Y,+1*N_X+1*M_X*N_Y-1*O_X-1*N_Y*O_X-1*M_X*O_Y+1*N_X*O_Y,+1*H_Y*N_X+1*L_Y*N_X-1*M_X*N_Y+1*O_X-1*L_Y*O_X+1*N_Y*O_X-1*O_Y+1*M_X*O_Y-1*N_X*O_Y,+1*H_Y*O_X-1*O_Y,+1*K_X+1*L_Y,+1+1*A_Y+1*L_Y,+1+1*M_Y,+1*F_X-1*M_X,+1*C_Y-1*L_Y,+1*I_Y-1*L_Y,+1*C_X-1*M_X],[H_Y,K_Y,L_X,L_Y,M_X,N_X,N_Y,O_X,O_Y,K_X,A_Y,M_Y,F_X,C_Y,I_Y,C_X]);
  24. print("A=(1,A_y,0) B_x=0 B_y=0 D=(1,0,0) E=(0,1,0) F_y=0 G_x=0 G_y=1 H=(1,H_y,0) I_x=0 J_x=1 J_y=0 ");
  25. print(ADFGBDEHBCFJAEIJACHKBGIKCEGLFHILDJKLABMNCDMOEFNO);
  26. solve([+1-1*O_Y+1*O_Y*O_Y,+1*L_X-1*O_Y,+1+1*I_X-1*O_Y,-1+1*K_Y+1*O_Y,+1+1*M_Y,+1*N_X+1*O_Y,-1+1*I_Y,-1+1*L_Y,+1*K_X-1*O_Y,+1*J_X-1*O_Y,+1*G_Y+1*O_Y,+1+1*A_Y,-1+1*M_X,-1+1*O_X,+1*N_Y-1*O_Y,+1*E_Y-1*O_Y],[O_Y,L_X,I_X,K_Y,M_Y,N_X,I_Y,L_Y,K_X,J_X,G_Y,A_Y,M_X,O_X,N_Y,E_Y]);
  27. print("A=(1,A_y,0) B_x=0 B_y=0 C_x=1 C_y=0 D=(0,1,0) E_x=0 F=(1,0,0) G=(1,G_y,0) H_x=0 H_y=1 J_y=0 ");
  28. print(ADFHCDGIBDEJABILEHKLCEFMAGJMBFGNACKNBCHOIJKOLMNO);
  29. solve([+1-3*O_Y+3*O_Y*O_Y,+1+1*M_Y-3*O_Y,-1+1*M_X+3*O_Y,+1+1*N_X-3*O_Y,-3+1*L_X+3*O_Y,-2+1*K_X+3*O_Y,-1+1*O_X+1*O_Y,-2+1*E_Y+3*O_Y,-1+1*K_Y,-1+1*N_Y,+1+1*H_Y,-1+1*F_Y+3*O_Y,-1+1*E_X,+1+1*J_Y-3*O_Y,-1+1*J_X,+1+1*G_Y-3*O_Y],[O_Y,M_Y,M_X,N_X,L_X,K_X,O_X,E_Y,K_Y,N_Y,H_Y,F_Y,E_X,J_Y,J_X,G_Y]);
  30. print("A=(1,0,0) B_x=1 B_y=0 C_x=0 C_y=1 D=(0,1,0) F=(1,F_y,0) G_x=0 H=(1,H_y,0) I_x=0 I_y=0 L_y=0 ");
  31. print(ADGHCEHJBGIJABEKCFGKBFHLACILDEIMAFJMBCDNDKLOEFNO);
  32. solve([+1/2+1*M_Y,-5/3+1*O_Y,-1/3+1*N_Y,-2+1*K_X,-4/3+1*O_X,-2+1*L_Y,+1/2+1*M_X,+1+1*I_X,-2/3+1*N_X,+1+1*E_Y,+1+1*D_Y,-1+1*F_Y,-1+1*F_X,-1+1*K_Y,-1+1*A_Y,-1+1*L_X],[M_Y,O_Y,N_Y,K_X,O_X,L_Y,M_X,I_X,N_X,E_Y,D_Y,F_Y,F_X,K_Y,A_Y,L_X]);
  33. print("A=(1,A_y,0) B_x=1 B_y=0 C_x=0 C_y=1 D=(1,D_y,0) E_x=0 G=(1,0,0) H=(0,1,0) I_y=0 J_x=0 J_y=0 ");
  34. print(ADGHCFGIBEHIBGJKCHJLAIKLABFMDEJMACENDFKNBCDOEFLO);
  35. solve([-1/2+1*K_X,+2+1*M_Y,-3/2+1*M_X,-3+1*N_Y,+1/2+1*N_X,-2/3+1*O_Y,-2+1*L_Y,+4+1*D_Y,+1+1*K_Y,-1/2+1*J_X,-2+1*J_Y,-2+1*C_Y,-1/2+1*B_X,+2+1*A_Y,+1+1*L_X,-1/3+1*O_X],[K_X,M_Y,M_X,N_Y,N_X,O_Y,L_Y,D_Y,K_Y,J_X,J_Y,C_Y,B_X,A_Y,L_X,O_X]);
  36. print("A=(1,A_y,0) B_y=0 C_x=0 D=(1,D_y,0) E_x=1 E_y=0 F_x=0 F_y=1 G=(0,1,0) H=(1,0,0) I_x=0 I_y=0 ");
  37. print(AEFGCDEIABHIBDGLACJLBCFMADKMBEJNFHKNCGHOIJKOLMNO);
  38. solve([+1-2*O_Y+1/2*O_Y*O_Y,-1+1*N_Y+1*O_Y,-1/2+1*K_X,-1+1*N_X+1/2*O_Y,-1/2+1*M_X+1/2*O_Y,+2+1*F_Y-1*O_Y,-1+1*M_Y+1/2*O_Y,-1+1*O_X+1*O_Y,+1*L_X+1/2*O_Y,-1+1*K_Y+1/2*O_Y,+1+1*G_Y,-1+1*J_X+1/2*O_Y,-1+1*L_Y,-1+1*J_Y,-1+1*D_Y+1/2*O_Y,-1+1*B_X+1/2*O_Y],[O_Y,N_Y,K_X,N_X,M_X,F_Y,M_Y,O_X,L_X,K_Y,G_Y,J_X,L_Y,J_Y,D_Y,B_X]);
  39. print("A=(1,0,0) B_y=0 C_x=0 C_y=1 D_x=0 E=(0,1,0) F=(1,F_y,0) G=(1,G_y,0) H_x=1 H_y=0 I_x=0 I_y=0 ");
  40. print(BCEFADEGBGIKAFJKDFHLACILCGHMBDJMABHNEIJNCDKOELMO);
  41. solve([+1-1*N_Y+1*N_Y*N_Y,+1*H_X+1*N_Y,-1+1*L_Y-1*N_Y,+1*N_X-1*N_Y,-2+1*O_Y,+1+1*O_X,-1+1*J_Y,-1+1*M_Y,+1*H_Y-1*N_Y,+1*F_Y+1*N_Y,+1*J_X-1*N_Y,+1*I_X-1*N_Y,+1+1*C_Y,+1*A_Y-1*N_Y,+1+1*M_X,+1+1*L_X],[N_Y,H_X,L_Y,N_X,O_Y,O_X,J_Y,M_Y,H_Y,F_Y,J_X,I_X,C_Y,A_Y,M_X,L_X]);
  42. print("A_x=0 B=(1,0,0) C=(1,C_y,0) D_x=0 D_y=1 E=(0,1,0) F=(1,F_y,0) G_x=0 G_y=0 I_y=0 K_x=1 K_y=0 ");
  43. print(BCEGADEIABFKEHJKBHILAGJLDFGMACHMCFINBDJNCDKOEFLO);
  44. solve([-1/2+1*M_Y,-1+1*G_Y,-2+1*O_Y,+1/2+1*M_X,+2+1*N_X,+1+1*L_Y,+1+1*O_X,+1+1*H_Y,-1+1*H_X,-1+1*J_X,-1+1*J_Y,-1+1*N_Y,+1+1*C_Y,+1+1*I_Y,+1+1*L_X,+1+1*F_X],[M_Y,G_Y,O_Y,M_X,N_X,L_Y,O_X,H_Y,H_X,J_X,J_Y,N_Y,C_Y,I_Y,L_X,F_X]);
  45. print("A_x=0 A_y=0 B=(1,0,0) C=(1,C_y,0) D_x=0 D_y=1 E=(0,1,0) F_y=0 G=(1,G_y,0) I_x=0 K_x=1 K_y=0 ");
  46. print(BCEHACGIBFGKAEJKAFHLDEILABDMCFJMDGHNBIJNCDKOLMNO);
  47. solve([-5/3+1*O_Y,-2+1*N_X,-3/2+1*L_Y,-2+1*N_Y,-1+1*H_Y,+1+1*M_X,-1/2+1*L_X,+1+1*J_X,-1+1*D_Y,+1+1*E_Y,-2+1*J_Y,-2+1*I_Y,-1+1*D_X,-1+1*O_X,-1+1*M_Y,+1+1*F_X],[O_Y,N_X,L_Y,N_Y,H_Y,M_X,L_X,J_X,D_Y,E_Y,J_Y,I_Y,D_X,O_X,M_Y,F_X]);
  48. print("A_x=0 A_y=1 B=(1,0,0) C=(0,1,0) E=(1,E_y,0) F_y=0 G_x=0 G_y=0 H=(1,H_y,0) I_x=0 K_x=1 K_y=0 ");
  49. print(BDEFACEGDGHICFHJBCILAFKLADJMBGKMABHNEIJNCDKOELMO);
  50. solve([+1-1*O_Y+1*O_Y*O_Y,-1+1*H_X+1*O_Y,+1+1*K_X,+1+1*O_X-1*O_Y,-1+1*F_Y+1*O_Y,-1+1*L_Y-1*O_Y,-1+1*N_Y+1*O_Y,-1+1*J_Y,+1*B_Y+1*O_Y,-1+1*M_Y,-1+1*N_X,-1+1*J_X,+1*K_Y-1*O_Y,+1*C_Y-1*O_Y,+1+1*L_X-1*O_Y,+1+1*M_X-1*O_Y],[O_Y,H_X,K_X,O_X,F_Y,L_Y,N_Y,J_Y,B_Y,M_Y,N_X,J_X,K_Y,C_Y,L_X,M_X]);
  51. print("A_x=0 A_y=1 B=(1,B_y,0) C_x=0 D=(1,0,0) E=(0,1,0) F=(1,F_y,0) G_x=0 G_y=0 H_y=0 I_x=1 I_y=0 ");
  52. print(BDEFADGHACEJEHIKCFGLABILBGJMAFKMBCHNDIJNCDKOELMO);
  53. solve([-1/2+1*O_Y,-1+1*F_Y,+1/2+1*L_X,+1+1*O_X,-1/2+1*M_X,+2+1*N_Y,+1+1*K_Y,+1+1*B_Y,+1+1*I_Y,+1+1*H_Y,-1+1*I_X,-1+1*N_X,+1+1*K_X,+1+1*C_X,-1/2+1*L_Y,-1/2+1*M_Y],[O_Y,F_Y,L_X,O_X,M_X,N_Y,K_Y,B_Y,I_Y,H_Y,I_X,N_X,K_X,C_X,L_Y,M_Y]);
  54. print("A_x=0 A_y=0 B=(1,B_y,0) C_y=0 D=(0,1,0) E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=1 H_x=0 J_x=1 J_y=0 ");
  55. print(BDEFCFGHAEHJBGIJAFIKADGLBHKLABCMCEINDJMNCDKOELMO);
  56. solve([+1+1*O_Y,+2+1*D_Y,-3/4+1*N_X,-3/4+1*O_X,-1+1*L_X,-1/2+1*N_Y,-3/2+1*M_X,-1/2+1*K_X,+1/2+1*K_Y,-1/2+1*I_Y,+1+1*B_Y,-1/2+1*I_X,-1/2+1*C_Y,-1/2+1*A_X,+1+1*M_Y,+1+1*L_Y],[O_Y,D_Y,N_X,O_X,L_X,N_Y,M_X,K_X,K_Y,I_Y,B_Y,I_X,C_Y,A_X,M_Y,L_Y]);
  57. print("A_y=0 B=(1,B_y,0) C_x=0 D=(1,D_y,0) E=(1,0,0) F=(0,1,0) G_x=0 G_y=1 H_x=0 H_y=0 J_x=1 J_y=0 ");
  58. print(BDEGACFGDFHICEHJABHLGIJLBCIMAEKMADJNBFKNCDKOEFLOGMNO);
  59. solve([+1-1*O_Y+1*O_Y*O_Y,-1+1*H_X+1*O_Y,+1+1*K_X,+1+1*O_X-1*O_Y,-1+1*L_Y+1*O_Y,-1+1*E_Y+1*O_Y,-1+1*M_Y-1*O_Y,-1+1*N_Y,-1+1*J_X,-1+1*L_X,+1*K_Y-1*O_Y,+1*C_Y-1*O_Y,-1+1*J_Y,+1*B_Y+1*O_Y,+1+1*M_X-1*O_Y,+1+1*N_X-1*O_Y],[O_Y,H_X,K_X,O_X,L_Y,E_Y,M_Y,N_Y,J_X,L_X,K_Y,C_Y,J_Y,B_Y,M_X,N_X]);
  60. print("A_x=0 A_y=1 B=(1,B_y,0) C_x=0 D=(1,0,0) E=(1,E_y,0) F_x=0 F_y=0 G=(0,1,0) H_y=0 I_x=1 I_y=0 ");
  61. print(BDHICDFJADEKCEGLAFILAGHMBEJMBFGNCHKNABCOIJKOLMNO);
  62. solve([+1+2*L_X*N_X+1*L_X*N_Y-1*O_X-1*N_X*O_X-1*N_Y*O_X,+1*L_X-1*L_X*N_Y+1*O_X+1*N_Y*O_X,+1*N_X-2*L_X*N_X-1*L_X*N_Y+1*O_X+1*N_Y*O_X,+1*N_X*N_X-1*O_X-1*N_Y*O_X,+1*N_Y-1*O_X-1*N_Y*O_X,-1+1*M_Y-2*N_X-1*N_Y,+1*G_Y-1*N_X-1*N_Y,-2+1*M_X-1*N_X,-1+1*G_X-1*N_X,-1+1*H_Y-1*N_X,-1+1*E_Y-1*N_X,+1*C_Y+1*N_X,+1*B_Y-1*N_X,-1+1*O_Y,-1+1*K_Y,-1+1*K_X,-1+1*E_X],[L_X,N_X,N_Y,O_X,M_Y,G_Y,M_X,G_X,H_Y,E_Y,C_Y,B_Y,O_Y,K_Y,K_X,E_X]);
  63. print("A_x=1 A_y=0 B=(1,B_y,0) C_x=0 D=(0,1,0) F_x=0 F_y=0 H=(1,H_y,0) I=(1,0,0) J_x=0 J_y=1 L_y=0 ");
  64. print(BEFGCDFHABHJACEKBDIKADGLAFIMCGJMEHINBCLNDEJOFKLO);
  65. solve([-1+1*N_X,+3+1*O_Y,+2+1*O_X,-2+1*M_Y,+1+1*M_X,+1+1*K_Y,+1+1*G_Y,+1+1*I_Y,-1+1*E_Y,+1+1*I_X,-1+1*N_Y,-1+1*L_Y,+1+1*D_Y,+1+1*A_X,+2+1*K_X,+2+1*L_X],[N_X,O_Y,O_X,M_Y,M_X,K_Y,G_Y,I_Y,E_Y,I_X,N_Y,L_Y,D_Y,A_X,K_X,L_X]);
  66. print("A_y=0 B=(1,0,0) C_x=0 C_y=1 D_x=0 E=(1,E_y,0) F=(0,1,0) G=(1,G_y,0) H_x=0 H_y=0 J_x=1 J_y=0 ");
  67. print(BEFGCDFIADGJACEKBDHKABILAFHMBCJMCGHNDELNEIJOFKLO);
  68. solve([-3/2+1*O_Y,+1+1*M_X,+1+1*N_Y,+1/2+1*K_Y,-1/2+1*L_Y,+2+1*M_Y,-1+1*N_X,+1/2+1*O_X,+1+1*H_Y,+1+1*C_Y,-1+1*B_Y,+1+1*H_X,+1+1*E_Y,+1+1*A_X,+1/2+1*K_X,+1/2+1*L_X],[O_Y,M_X,N_Y,K_Y,L_Y,M_Y,N_X,O_X,H_Y,C_Y,B_Y,H_X,E_Y,A_X,K_X,L_X]);
  69. print("A_y=0 B=(1,B_y,0) C_x=0 D_x=0 D_y=0 E=(1,E_y,0) F=(0,1,0) G=(1,0,0) I_x=0 I_y=1 J_x=1 J_y=0 ");
  70. print(BEFHAGHJCFIJEGIKADFLBCGLDHIMABKMACENBDJNCDKOELMO);
  71. solve([+1-1*O_Y+1/2*O_Y*O_Y,+1*N_X+1/2*O_Y-1*N_X*O_Y,-3+1*O_X+1*O_Y,-2+1*L_X+1*O_Y,-1+1*C_X+1*O_Y,+1+1*K_X-1*O_Y,-1+1*J_Y+1/2*O_Y,+1+1*B_Y-1*O_Y,+1*D_Y-1/2*O_Y,-1+1*N_Y,-1+1*C_Y,-1+1*D_X,-1+1*M_X,+1+1*F_Y-1/2*O_Y,+1*L_Y-1*O_Y,+1*M_Y-1*O_Y],[N_X,O_Y,O_X,L_X,C_X,K_X,J_Y,B_Y,D_Y,N_Y,C_Y,D_X,M_X,F_Y,L_Y,M_Y]);
  72. print("A_x=0 A_y=1 B=(1,B_y,0) E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=0 H=(0,1,0) I_x=1 I_y=0 J_x=0 K_y=0 ");
  73. print(BEFHCDGHACFJAHIKDFILBGJLABDMCEIMAEGNBCKNDEJOFGKO);
  74. solve([-2+1*L_X,-1/2+1*M_Y,+1/2+1*N_Y,+1+1*K_X,+1/2+1*M_X,+1+1*O_Y,+1/2+1*N_X,-2+1*O_X,+1+1*I_X,-1+1*L_Y,-1+1*I_Y,-1+1*B_Y,+1+1*E_Y,+1+1*A_X,+1+1*K_Y,+1+1*G_Y],[L_X,M_Y,N_Y,K_X,M_X,O_Y,N_X,O_X,I_X,L_Y,I_Y,B_Y,E_Y,A_X,K_Y,G_Y]);
  75. print("A_y=0 B=(1,B_y,0) C_x=0 C_y=0 D_x=0 D_y=1 E=(1,E_y,0) F=(1,0,0) G_x=0 H=(0,1,0) J_x=1 J_y=0 ");
  76. print(CDEFBFGIAEGJBEHKACIKAFHLBCJLABDMCGHMDIJNDKLOEMNO);
  77. solve([+1/2+1*O_Y,+5/2+1*O_X,+2+1*K_X,+1/2+1*M_X,+2+1*L_Y,+1+1*L_X,+1+1*K_Y,-3/2+1*N_X,+1+1*H_Y,+1+1*H_X,+1+1*D_Y,-1+1*C_Y,+1+1*A_X,+1+1*B_Y,+1/2+1*N_Y,+1/2+1*M_Y],[O_Y,O_X,K_X,M_X,L_Y,L_X,K_Y,N_X,H_Y,H_X,D_Y,C_Y,A_X,B_Y,N_Y,M_Y]);
  78. print("A_y=0 B_x=0 C=(1,C_y,0) D=(1,D_y,0) E=(1,0,0) F=(0,1,0) G_x=0 G_y=0 I_x=0 I_y=1 J_x=1 J_y=0 ");
  79. print(CDEGBDFHEFIJACFKAGHLBCJLADIMBGKMABENCHINDJKOELMO);
  80. solve([-2+1*L_X,-2+1*N_X,+1+1*O_X,-3+1*O_Y,+1+1*H_Y,-2+1*G_Y,+1+1*K_Y,-1+1*M_X,-1+1*N_Y,-1+1*A_Y,-1+1*C_Y,-1+1*A_X,+1+1*K_X,+1+1*J_X,-3+1*L_Y,-3+1*M_Y],[L_X,N_X,O_X,O_Y,H_Y,G_Y,K_Y,M_X,N_Y,A_Y,C_Y,A_X,K_X,J_X,L_Y,M_Y]);
  81. print("B_x=0 B_y=1 C=(1,C_y,0) D=(0,1,0) E=(1,0,0) F_x=0 F_y=0 G=(1,G_y,0) H_x=0 I_x=1 I_y=0 J_y=0 ");
  82. print(CDGIEFHJADFKBEGKBDHLAEILBCFMAGJMACHNBIJNCKLODMNO);
  83. solve([+1-1*O_Y+1*O_Y*O_Y,+2/3+1*C_Y-1/3*O_Y,-1+1*O_X+2*O_Y,-1+1*J_X+1*O_Y,+1*H_Y-1*O_Y,+1+1*L_Y-1*O_Y,-2+1*L_X+1*O_Y,-1+1*N_Y-1*O_Y,-1+1*F_Y+1*O_Y,-1+1*M_Y,-2+1*H_X+1*O_Y,-1+1*J_Y,-2+1*B_X+1*O_Y,+1+1*I_Y,-1+1*N_X+2*O_Y,-1+1*M_X+2*O_Y],[O_Y,C_Y,O_X,J_X,H_Y,L_Y,L_X,N_Y,F_Y,M_Y,H_X,J_Y,B_X,I_Y,N_X,M_X]);
  84. print("A_x=0 A_y=1 B_y=0 C=(1,C_y,0) D=(0,1,0) E_x=1 E_y=0 F_x=0 G=(1,0,0) I=(1,I_y,0) K_x=0 K_y=0 ");
  85. print(CEFHBGHJAFIJEGIKBDFLACGLADHMBCIMDEJNABKNCDKOELMO);
  86. solve([+1+1*K_Y*O_X-1*O_Y,+1*K_Y-1*N_Y-1*M_Y*N_Y+1*O_X,+1*K_Y*K_Y+2*M_Y*N_Y-1*N_Y*N_Y-2*K_Y*O_X-1*M_Y*O_X+1*N_Y*O_X+1*O_Y,+1*M_Y+1*O_X-1*M_Y*O_X+1*N_Y*O_X-1*O_Y,+1*K_Y*M_Y-1*M_Y*N_Y+1*O_X,+1*M_Y*M_Y-1*K_Y*O_X-1*M_Y*O_X+1*N_Y*O_X,+1*K_Y*N_Y+1*M_Y*N_Y-1*N_Y*N_Y+1*O_X-1*K_Y*O_X-1*M_Y*O_X+1*N_Y*O_X,+1*A_X+1*K_Y-1*N_Y,+1+1*I_Y-1*K_Y-1*M_Y+1*N_Y,+1*B_X-1*M_Y,-1+1*D_Y-1*K_Y,-1+1*D_X,-1+1*F_Y+1*K_Y+1*M_Y-1*N_Y,-1+1*L_Y,-1+1*N_X,-1+1*A_Y,+1*L_X-1*O_X,+1*M_X-1*O_X],[K_Y,M_Y,N_Y,O_X,O_Y,A_X,I_Y,B_X,D_Y,D_X,F_Y,L_Y,N_X,A_Y,L_X,M_X]);
  87. print("B_y=0 C_x=0 C_y=1 E=(0,1,0) F_x=0 G=(1,0,0) H_x=0 H_y=0 I=(1,I_y,0) J_x=1 J_y=0 K=(1,K_y,0) ");
  88. print(CEGIAEFJFGHKABIKBDFLACHLADGMBCJMBEHNDIJNCDKOELMO);
  89. solve([+1-4*O_X-1*O_X*O_X,-1/2+1*N_X+1/2*O_X,-1+1*N_Y+1*O_X,-1-1*O_X+1*O_Y,-1/2+1*D_X-1/2*O_X,-1/2+1*M_Y-1/2*O_X,+1*L_Y-1*O_X,-1/2+1*B_Y+1/2*O_X,+3/2+1*C_Y+1/2*O_X,-1/2+1*H_X+1/2*O_X,-1/2+1*D_Y-1/2*O_X,+1/2+1*I_Y+1/2*O_X,-1/2+1*B_X+1/2*O_X,-1/2+1*A_Y-1/2*O_X,+1*L_X-1*O_X,+1*M_X-1*O_X],[O_X,N_X,N_Y,O_Y,D_X,M_Y,L_Y,B_Y,C_Y,H_X,D_Y,I_Y,B_X,A_Y,L_X,M_X]);
  90. print("A_x=0 C=(1,C_y,0) E=(0,1,0) F_x=0 F_y=0 G=(1,0,0) H_y=0 I=(1,I_y,0) J_x=0 J_y=1 K_x=1 K_y=0 ");
  91. print(CEGIDEFJABEKFHIKAFGLBCHLBDGMACJMADHNBIJNCDKOLMNO);
  92. solve([+1-1*O_Y-1*O_Y*O_Y,-1+1*N_X+1*O_Y,+1+1*K_Y+1*O_Y,-1+1*F_X+1*O_Y,+1*L_X+1*O_Y,-2+1*H_Y-1*O_Y,+1*M_Y+1*O_Y,+1+1*A_Y+1*O_Y,-1+1*L_Y-1*O_Y,+1*B_X+1*O_Y,-1+1*B_Y,-1+1*N_Y,-1+1*K_X,-1+1*O_X,+1*G_Y-1*O_Y,+1*H_X+1*O_Y],[O_Y,N_X,K_Y,F_X,L_X,H_Y,M_Y,A_Y,L_Y,B_X,B_Y,N_Y,K_X,O_X,G_Y,H_X]);
  93. print("A=(1,A_y,0) C=(0,1,0) D_x=1 D_y=0 E_x=0 E_y=0 F_y=0 G_x=0 I_x=0 I_y=1 J=(1,0,0) M=(1,M_y,0) ");
  94. print(CFGHBEGIADHIAGJKBHJLCIKLABFMDEJMACENDFKNBCDOEFLO);
  95. solve([+1+1*O_X+1/3*O_X*O_X,+1*H_Y-1/3*O_X,+1+1*C_Y+1/3*O_X,-3+1*N_X,+3+1*L_X+1*O_X,+2+1*N_Y+1*O_X,+1*K_X+1*O_X,+1+1*I_Y+1*O_X,-1+1*J_Y-1*O_X,+1*J_X+1*O_X,+2+1*D_Y+1*O_X,+2+1*K_Y+1*O_X,+1*A_X+1*O_X,-3+1*D_X-1*O_X,-1+1*L_Y,-1+1*O_Y],[O_X,H_Y,C_Y,N_X,L_X,N_Y,K_X,I_Y,J_Y,J_X,D_Y,K_Y,A_X,D_X,L_Y,O_Y]);
  96. print("A_y=0 B_x=0 B_y=0 C=(1,C_y,0) E_x=0 E_y=1 F=(1,0,0) G=(0,1,0) H=(1,H_y,0) I_x=0 M_x=1 M_y=0 ");
  97. print(CFHIDEGJAFGKBEIKBDHLACJLBCGMAEHMADINBFJNCDKOEFLO);
  98. solve([+1+1*O_Y-1*O_Y*O_Y,+1*N_X+2*N_X*O_Y-1*O_Y*O_Y,-2+1*M_X+1*O_Y,+1+1*E_X-1*O_Y,-1+1*J_Y-2*O_Y,+1*B_Y-1*O_Y,-1+1*N_Y-1*O_Y,+1*L_Y-1*O_Y,-1+1*D_Y-1*O_Y,-1+1*I_Y-1*O_Y,-2+1*B_X+1*O_Y,-1+1*E_Y,-1+1*D_X,-1+1*O_X,-2+1*G_X+1*O_Y,-1+1*M_Y],[N_X,O_Y,M_X,E_X,J_Y,B_Y,N_Y,L_Y,D_Y,I_Y,B_X,E_Y,D_X,O_X,G_X,M_Y]);
  99. print("A=(1,0,0) C=(0,1,0) F_x=0 F_y=0 G_y=0 H_x=0 H_y=1 I_x=0 J=(1,J_y,0) K_x=1 K_y=0 L=(1,L_y,0) ");
  100. print(DEFHBCFIAFGJBDGKACHKCEGLADILABEMBHJNCDMNEIJOKLMO);
  101. solve([+3+1*O_Y,+8+1*O_X,-4+1*L_X,+2+1*M_X,-1/2+1*E_Y,-2+1*J_X,+1+1*N_X,+1+1*N_Y,-2+1*J_Y,-2+1*A_X,+1+1*M_Y,-1+1*H_Y,-2+1*G_X,+1+1*C_Y,-1+1*L_Y,-1+1*A_Y],[O_Y,O_X,L_X,M_X,E_Y,J_X,N_X,N_Y,J_Y,A_X,M_Y,H_Y,G_X,C_Y,L_Y,A_Y]);
  102. print("B_x=0 B_y=0 C_x=0 D=(1,0,0) E=(1,E_y,0) F=(0,1,0) G_y=0 H=(1,H_y,0) I_x=0 I_y=1 K_x=1 K_y=0 ");
  103. print(DEGICFHIBFGKAEJKADHLBCJLACGMBEHMABINDFJNCDKOEFLO);
  104. solve([+1-1/3*N_Y*N_Y-1/3*O_Y+1/3*N_Y*O_Y,+1*M_X-1/2*M_X*N_Y+1/3*N_Y*N_Y-1/6*O_Y+1/6*N_Y*O_Y,+1*N_Y-2/3*N_Y*N_Y+1/3*O_Y-1/3*N_Y*O_Y,-2+1*L_Y+1*N_Y,+1+1*J_Y-1*N_Y,-1+1*J_X+1*N_Y,+1+1*L_X,+2+1*E_Y-1*N_Y,+1*N_X+1*N_Y,-1+1*O_X+1*O_Y,-1+1*H_Y+1*N_Y,+1*A_X+1*N_Y,+1+1*D_Y,+1*B_X+1*N_Y,-1+1*M_Y,-1+1*A_Y],[M_X,N_Y,O_Y,L_Y,J_Y,J_X,L_X,E_Y,N_X,O_X,H_Y,A_X,D_Y,B_X,M_Y,A_Y]);
  105. print("B_y=0 C_x=0 C_y=1 D=(1,D_y,0) E=(1,E_y,0) F_x=0 F_y=0 G=(1,0,0) H_x=0 I=(0,1,0) K_x=1 K_y=0 ");
  106. print(DEHICFGJAEGKBFHKBGILAHJLBCEMADFMACINBDJNCDKOEFLO);
  107. solve([+1-1*N_X*N_X-1*N_Y-1*N_X*N_Y,+1*N_X+2*N_Y-1*N_X*N_Y-1*N_Y*N_Y,+1*I_Y+1*N_X+1*N_Y,+1+1*J_X-1*N_X-1*N_Y,-1+1*M_Y+1*N_X+1*N_Y,-1+1*G_Y-1*N_X-1*N_Y,+1*M_X-1*N_X-1*N_Y,+1*C_Y+1*N_X+1*N_Y,+1+1*O_Y,-1+1*L_Y,+1*C_X-1*N_X-1*N_Y,-1+1*J_Y,+1+1*D_Y,+1*B_X-1*N_X-1*N_Y,-1+1*L_X,-1+1*O_X],[N_X,N_Y,I_Y,J_X,M_Y,G_Y,M_X,C_Y,O_Y,L_Y,C_X,J_Y,D_Y,B_X,L_X,O_X]);
  108. print("A_x=0 A_y=1 B_y=0 D=(1,D_y,0) E=(0,1,0) F_x=1 F_y=0 G_x=0 H=(1,0,0) I=(1,I_y,0) K_x=0 K_y=0 ");
  109. print(DFGIACFJBGHJBCDKAEGKADHLABIMCELMBEFNCHINDEJOFKLO);
  110. solve([-1/3+1*M_Y,+2/3+1*M_X,-2+1*O_Y,+2+1*N_Y,-3+1*L_Y,+1+1*N_X,-1+1*I_Y,+2+1*O_X,+1+1*E_X,+1+1*B_X,+1+1*C_Y,-1+1*E_Y,+1+1*D_Y,-1+1*K_Y,+2+1*L_X,+2+1*K_X],[M_Y,M_X,O_Y,N_Y,L_Y,N_X,I_Y,O_X,E_X,B_X,C_Y,E_Y,D_Y,K_Y,L_X,K_X]);
  111. print("A_x=0 A_y=1 B_y=0 C_x=0 D=(1,D_y,0) F=(0,1,0) G=(1,0,0) H_x=1 H_y=0 I=(1,I_y,0) J_x=0 J_y=0 ");
  112. print(EFGHADFIBCFJACHKBGIKABELAGJMCDLMBDHNCEINDEJOFKLO);
  113. solve([+2/3+1*M_Y,-1/3+1*M_X,+3/2+1*O_Y,+2+1*J_Y,+1/2+1*L_Y,+2+1*G_Y,-1/2+1*O_X,-2+1*N_X,+1+1*N_Y,+1+1*D_Y,+1+1*E_Y,-1+1*J_X,-1+1*B_X,+1+1*B_Y,-1/2+1*L_X,-1/2+1*K_X],[M_Y,M_X,O_Y,J_Y,L_Y,G_Y,O_X,N_X,N_Y,D_Y,E_Y,J_X,B_X,B_Y,L_X,K_X]);
  114. print("A_x=0 A_y=0 C_x=1 C_y=0 D_x=0 E=(1,E_y,0) F=(0,1,0) G=(1,G_y,0) H=(1,0,0) I_x=0 I_y=1 K_y=0 ");
  115. print(EFGIABGJCFHJBEHKBDFLACKLCDGMAHIMADENBCINDJKOELMO);
  116. solve([+1-2*O_Y-1/4*O_Y*O_Y,+1*K_Y-1*O_Y+1/2*K_Y*O_Y,-3/2+1*N_Y-1/4*O_Y,-1+1*O_X+1/2*O_Y,+3/2+1*N_X+1/4*O_Y,-3/2+1*H_X-1/4*O_Y,-1/2+1*M_Y+1/4*O_Y,-1/2+1*L_Y-1/4*O_Y,+1/2+1*E_Y-1/4*O_Y,+1/2+1*I_Y+1/4*O_Y,-1/2+1*D_Y-1/4*O_Y,-1/2+1*B_Y-1/4*O_Y,-1+1*M_X,-1+1*D_X,-1/2+1*L_X+1/4*O_Y,-1+1*K_X+1*K_Y],[K_Y,O_Y,N_Y,O_X,N_X,H_X,M_Y,L_Y,E_Y,I_Y,D_Y,B_Y,M_X,D_X,L_X,K_X]);
  117. print("A_x=0 A_y=1 B_x=0 C_x=1 C_y=0 E=(1,E_y,0) F=(1,0,0) G=(0,1,0) H_y=0 I=(1,I_y,0) J_x=0 J_y=0 ");
  118. print(FGHIBEGJACHJAEFKCDFLABILADGMBCKMBDHNCEINDJKOELMO);
  119. solve([+1-1*O_Y+1/5*O_Y*O_Y,+1*N_Y+1*O_Y-1*N_Y*O_Y-2/5*O_Y*O_Y,-1+1*M_X+1*O_Y,+1+1*L_Y-1*O_Y,-2+1*L_X+1*O_Y,+1+1*O_X,-3+1*K_Y+1*O_Y,-3+1*F_X+1*O_Y,+1*N_X+1*N_Y,+2+1*E_Y-1*O_Y,-2+1*C_Y+1*O_Y,-1+1*D_Y,+1+1*D_X,+1+1*K_X,-1+1*M_Y,+1+1*B_Y],[N_Y,O_Y,M_X,L_Y,L_X,O_X,K_Y,F_X,N_X,E_Y,C_Y,D_Y,D_X,K_X,M_Y,B_Y]);
  120. print("A_x=0 A_y=1 B=(1,B_y,0) C_x=0 E=(1,E_y,0) F_y=0 G=(1,0,0) H_x=0 H_y=0 I_x=1 I_y=0 J=(0,1,0) ");
复制代码


=============
wayne实数解
{{15,12},"ACDHDFIJEGHKCEFLABJLBCGMAIKMBDENAFGNBHIOCJKOLMNO",{{{"A",{1,-1,0}},{"B",{Root[-1+#1^2+#1^3&,1,0],1,1}},{"C",{1,0,0}},{"D",{1,Root[-1-#1+#1^3&,1,0],0}},{"E",{0,0,1}},{"F",{1,0,1}},{"G",{0,1,1}},{"H",{0,1,0}},{"I",{Root[-1+#1^2+#1^3&,1,0],Root[1+2 #1-3 #1^2+#1^3&,1,0],1}},{"J",{Root[-1-#1+#1^3&,1,0],1+Root[1+2 #1+#1^2+#1^3&,1,0],1}},{"K",{0,1+Root[1+2 #1+#1^2+#1^3&,1,0],1}},{"L",{Root[-1+#1-2 #1^2+#1^3&,1,0],0,1}},{"M",{Root[1+2 #1+#1^2+#1^3&,1,0],1,1}},{"N",{1+Root[1+2 #1+#1^2+#1^3&,1,0],Root[-1+2 #1-#1^2+#1^3&,1,0],1}},{"O",{Root[-1+#1^2+#1^3&,1,0],1+Root[1+2 #1+#1^2+#1^3&,1,0],1}}}}}
{{15,12},"ADEFBFGICEHIACGKBEJKABHLCFJLDGHMAIJMBCDNDKLOEMNO",{{{"A",{1,1,0}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,-1,0}},{"E",{1,0,0}},{"F",{0,1,0}},{"G",{0,-1,1}},{"H",{-1,0,1}},{"I",{0,0,1}},{"J",{1,1,1}},{"K",{2,1,1}},{"L",{1,2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{3/2,-(1/2),1}},{"O",{7/2,-(1/2),1}}}}}
{{15,12},"ADEGBFGICEHIACFKBEJKABHLCGJLDFHMAIJMBCDNDKLOEFNO",{{{"A",{1,1,0}},{"B",{0,1,1}},{"C",{1,0,1}},{"D",{1,-1,0}},{"E",{1,0,0}},{"F",{0,-1,1}},{"G",{0,1,0}},{"H",{-1,0,1}},{"I",{0,0,1}},{"J",{1,1,1}},{"K",{2,1,1}},{"L",{1,2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{2,-1,1}},{"O",{4,-1,1}}}}}
{{15,12},"ADEHBEGIBDFJAFGLCDILCEFMABKMACJNGHKNBCHOIJKOLMNO",{{{"A",{1,Root[1+#1^2+#1^3&,1,0],0}},{"B",{0,0,1}},{"C",{Root[-1+#1+#1^3&,1,0],Root[-1+#1+#1^3&,1,0]^2,1}},{"D",{1,0,0}},{"E",{0,1,0}},{"F",{Root[-1+#1+#1^3&,1,0],0,1}},{"G",{0,1,1}},{"H",{1,Root[-1+#1+#1^3&,1,0],0}},{"I",{0,Root[-1+#1+#1^3&,1,0]^2,1}},{"J",{1,0,1}},{"K",{-Root[-1+#1+#1^3&,1,0]^2,Root[-1+#1+#1^3&,1,0],1}},{"L",{-1+Root[-8+4 #1+#1^3&,1,0],Root[-1+#1+#1^3&,1,0]^2,1}},{"M",{Root[-1+#1+#1^3&,1,0],-1,1}},{"N",{Root[-1+5 #1-2 #1^2+#1^3&,1,0],Root[-3-#1+2 #1^2+#1^3&,1,0],1}},{"O",{Root[-1+4 #1-5 #1^2+3 #1^3&,1,0],Root[-1+2 #1+5 #1^2+3 #1^3&,1,0],1}}}}}
{{15,12},"ADGHCEHJBGIJABEKCFGKBFHLACILDEIMAFJMBCDNDKLOEFNO",{{{"A",{1,1,0}},{"B",{1,0,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{0,-1,1}},{"F",{1,1,1}},{"G",{1,0,0}},{"H",{0,1,0}},{"I",{-1,0,1}},{"J",{0,0,1}},{"K",{2,1,1}},{"L",{1,2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{2/3,1/3,1}},{"O",{4/3,5/3,1}}}}}
{{15,12},"ADGHCFGIBEHIBGJKCHJLAIKLABFMDEJMACENDFKNBCDOEFLO",{{{"A",{1,-2,0}},{"B",{1/2,0,1}},{"C",{0,2,1}},{"D",{1,-4,0}},{"E",{1,0,1}},{"F",{0,1,1}},{"G",{0,1,0}},{"H",{1,0,0}},{"I",{0,0,1}},{"J",{1/2,2,1}},{"K",{1/2,-1,1}},{"L",{-1,2,1}},{"M",{3/2,-2,1}},{"N",{-(1/2),3,1}},{"O",{1/3,2/3,1}}}}}
{{15,12},"AEFGCDEIABHIBDGLACJLBCFMADKMBEJNFHKNCGHOIJKOLMNO",{{{"A",{1,0,0}},{"B",{-(1/Sqrt[2]),0,1}},{"C",{0,1,1}},{"D",{0,-(1/Sqrt[2]),1}},{"E",{0,1,0}},{"F",{1,Sqrt[2],0}},{"G",{1,-1,0}},{"H",{1,0,1}},{"I",{0,0,1}},{"J",{-(1/Sqrt[2]),1,1}},{"K",{1/2,-(1/Sqrt[2]),1}},{"L",{-1-1/Sqrt[2],1,1}},{"M",{-(1/2)-1/Sqrt[2],-(1/Sqrt[2]),1}},{"N",{-(1/Sqrt[2]),-1-Sqrt[2],1}},{"O",{-1-Sqrt[2],2+Sqrt[2],1}}},{{"A",{1,0,0}},{"B",{1/Sqrt[2],0,1}},{"C",{0,1,1}},{"D",{0,1/Sqrt[2],1}},{"E",{0,1,0}},{"F",{1,-Sqrt[2],0}},{"G",{1,-1,0}},{"H",{1,0,1}},{"I",{0,0,1}},{"J",{1/Sqrt[2],1,1}},{"K",{1/2,1/Sqrt[2],1}},{"L",{-1+1/Sqrt[2],1,1}},{"M",{-(1/2)+1/Sqrt[2],1/Sqrt[2],1}},{"N",{1/Sqrt[2],-1+Sqrt[2],1}},{"O",{-1+Sqrt[2],2-Sqrt[2],1}}}}}
{{15,12},"BCEGADEIABFKEHJKBHILAGJLDFGMACHMCFINBDJNCDKOEFLO",{{{"A",{0,0,1}},{"B",{1,0,0}},{"C",{1,-1,0}},{"D",{0,1,1}},{"E",{0,1,0}},{"F",{-1,0,1}},{"G",{1,1,0}},{"H",{1,-1,1}},{"I",{0,-1,1}},{"J",{1,1,1}},{"K",{1,0,1}},{"L",{-1,-1,1}},{"M",{-(1/2),1/2,1}},{"N",{-2,1,1}},{"O",{-1,2,1}}}}}
{{15,12},"BCEHACGIBFGKAEJKAFHLDEILABDMCFJMDGHNBIJNCDKOLMNO",{{{"A",{0,1,1}},{"B",{1,0,0}},{"C",{0,1,0}},{"D",{1,1,1}},{"E",{1,-1,0}},{"F",{-1,0,1}},{"G",{0,0,1}},{"H",{1,1,0}},{"I",{0,2,1}},{"J",{-1,2,1}},{"K",{1,0,1}},{"L",{1/2,3/2,1}},{"M",{-1,1,1}},{"N",{2,2,1}},{"O",{1,5/3,1}}}}}
{{15,12},"BDEFADGHACEJEHIKCFGLABILBGJMAFKMBCHNDIJNCDKOELMO",{{{"A",{0,0,1}},{"B",{1,-1,0}},{"C",{-1,0,1}},{"D",{0,1,0}},{"E",{1,0,0}},{"F",{1,1,0}},{"G",{0,1,1}},{"H",{0,-1,1}},{"I",{1,-1,1}},{"J",{1,0,1}},{"K",{-1,-1,1}},{"L",{-(1/2),1/2,1}},{"M",{1/2,1/2,1}},{"N",{1,-2,1}},{"O",{-1,1/2,1}}}}}
{{15,12},"BDEFCFGHAEHJBGIJAFIKADGLBHKLABCMCEINDJMNCDKOELMO",{{{"A",{1/2,0,1}},{"B",{1,-1,0}},{"C",{0,1/2,1}},{"D",{1,-2,0}},{"E",{1,0,0}},{"F",{0,1,0}},{"G",{0,1,1}},{"H",{0,0,1}},{"I",{1/2,1/2,1}},{"J",{1,0,1}},{"K",{1/2,-(1/2),1}},{"L",{1,-1,1}},{"M",{3/2,-1,1}},{"N",{3/4,1/2,1}},{"O",{3/4,-1,1}}}}}
{{15,12},"BEFGCDFHABHJACEKBDIKADGLAFIMCGJMEHINBCLNDEJOFKLO",{{{"A",{-1,0,1}},{"B",{1,0,0}},{"C",{0,1,1}},{"D",{0,-1,1}},{"E",{1,1,0}},{"F",{0,1,0}},{"G",{1,-1,0}},{"H",{0,0,1}},{"I",{-1,-1,1}},{"J",{1,0,1}},{"K",{-2,-1,1}},{"L",{-2,1,1}},{"M",{-1,2,1}},{"N",{1,1,1}},{"O",{-2,-3,1}}}}}
{{15,12},"BEFGCDFIADGJACEKBDHKABILAFHMBCJMCGHNDELNEIJOFKLO",{{{"A",{-1,0,1}},{"B",{1,1,0}},{"C",{0,-1,1}},{"D",{0,0,1}},{"E",{1,-1,0}},{"F",{0,1,0}},{"G",{1,0,0}},{"H",{-1,-1,1}},{"I",{0,1,1}},{"J",{1,0,1}},{"K",{-(1/2),-(1/2),1}},{"L",{-(1/2),1/2,1}},{"M",{-1,-2,1}},{"N",{1,-1,1}},{"O",{-(1/2),3/2,1}}}}}
{{15,12},"BEFHCDGHACFJAHIKDFILBGJLABDMCEIMAEGNBCKNDEJOFGKO",{{{"A",{-1,0,1}},{"B",{1,1,0}},{"C",{0,0,1}},{"D",{0,1,1}},{"E",{1,-1,0}},{"F",{1,0,0}},{"G",{0,-1,1}},{"H",{0,1,0}},{"I",{-1,1,1}},{"J",{1,0,1}},{"K",{-1,-1,1}},{"L",{2,1,1}},{"M",{-(1/2),1/2,1}},{"N",{-(1/2),-(1/2),1}},{"O",{2,-1,1}}}}}
{{15,12},"CDEFBFGIAEGJBEHKACIKAFHLBCJLABDMCGHMDIJNDKLOEMNO",{{{"A",{-1,0,1}},{"B",{0,-1,1}},{"C",{1,1,0}},{"D",{1,-1,0}},{"E",{1,0,0}},{"F",{0,1,0}},{"G",{0,0,1}},{"H",{-1,-1,1}},{"I",{0,1,1}},{"J",{1,0,1}},{"K",{-2,-1,1}},{"L",{-1,-2,1}},{"M",{-(1/2),-(1/2),1}},{"N",{3/2,-(1/2),1}},{"O",{-(5/2),-(1/2),1}}}}}
{{15,12},"CDEGBDFHEFIJACFKAGHLBCJLADIMBGKMABENCHINDJKOELMO",{{{"A",{1,1,1}},{"B",{0,1,1}},{"C",{1,1,0}},{"D",{0,1,0}},{"E",{1,0,0}},{"F",{0,0,1}},{"G",{1,2,0}},{"H",{0,-1,1}},{"I",{1,0,1}},{"J",{-1,0,1}},{"K",{-1,-1,1}},{"L",{2,3,1}},{"M",{1,3,1}},{"N",{2,1,1}},{"O",{-1,3,1}}}}}
{{15,12},"CEGIAEFJFGHKABIKBDFLACHLADGMBCJMBEHNDIJNCDKOELMO",{{{"A",{0,1/2 (-1-Sqrt[5]),1}},{"B",{1/2 (3+Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"C",{1,1/2 (-1+Sqrt[5]),0}},{"D",{1/2 (-1-Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"E",{0,1,0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{1/2 (3+Sqrt[5]),0,1}},{"I",{1,1/2 (1+Sqrt[5]),0}},{"J",{0,1,1}},{"K",{1,0,1}},{"L",{-2-Sqrt[5],-2-Sqrt[5],1}},{"M",{-2-Sqrt[5],1/2 (-1-Sqrt[5]),1}},{"N",{1/2 (3+Sqrt[5]),3+Sqrt[5],1}},{"O",{-2-Sqrt[5],-1-Sqrt[5],1}}},{{"A",{0,1/2 (-1+Sqrt[5]),1}},{"B",{1/2 (3-Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"C",{1,1/2 (-1-Sqrt[5]),0}},{"D",{1/2 (-1+Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"E",{0,1,0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{1/2 (3-Sqrt[5]),0,1}},{"I",{1,1/2 (1-Sqrt[5]),0}},{"J",{0,1,1}},{"K",{1,0,1}},{"L",{-2+Sqrt[5],-2+Sqrt[5],1}},{"M",{-2+Sqrt[5],1/2 (-1+Sqrt[5]),1}},{"N",{1/2 (3-Sqrt[5]),3-Sqrt[5],1}},{"O",{-2+Sqrt[5],-1+Sqrt[5],1}}}}}
{{15,12},"CEGIDEFJABEKFHIKAFGLBCHLBDGMACJMADHNBIJNCDKOLMNO",{{{"A",{1,1/2 (-1-Sqrt[5]),0}},{"B",{1/2 (1-Sqrt[5]),1,1}},{"C",{0,1,0}},{"D",{1,0,1}},{"E",{0,0,1}},{"F",{1/2 (3-Sqrt[5]),0,1}},{"G",{0,1/2 (-1+Sqrt[5]),1}},{"H",{1/2 (1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"I",{0,1,1}},{"J",{1,0,0}},{"K",{1,1/2 (-1-Sqrt[5]),1}},{"L",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"M",{1,1/2 (1-Sqrt[5]),0}},{"N",{1/2 (3-Sqrt[5]),1,1}},{"O",{1,1/2 (-1+Sqrt[5]),1}}},{{"A",{1,1/2 (-1+Sqrt[5]),0}},{"B",{1/2 (1+Sqrt[5]),1,1}},{"C",{0,1,0}},{"D",{1,0,1}},{"E",{0,0,1}},{"F",{1/2 (3+Sqrt[5]),0,1}},{"G",{0,1/2 (-1-Sqrt[5]),1}},{"H",{1/2 (1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"I",{0,1,1}},{"J",{1,0,0}},{"K",{1,1/2 (-1+Sqrt[5]),1}},{"L",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"M",{1,1/2 (1+Sqrt[5]),0}},{"N",{1/2 (3+Sqrt[5]),1,1}},{"O",{1,1/2 (-1-Sqrt[5]),1}}}}}
{{15,12},"CFHIDEGJAFGKBEIKBDHLACJLBCGMAEHMADINBFJNCDKOEFLO",{{{"A",{1,0,0}},{"B",{1/2 (3-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"C",{0,1,0}},{"D",{1,1/2 (3+Sqrt[5]),1}},{"E",{1/2 (-1+Sqrt[5]),1,1}},{"F",{0,0,1}},{"G",{1/2 (3-Sqrt[5]),0,1}},{"H",{0,1,1}},{"I",{0,1/2 (3+Sqrt[5]),1}},{"J",{1,2+Sqrt[5],0}},{"K",{1,0,1}},{"L",{1,1/2 (1+Sqrt[5]),0}},{"M",{1/2 (3-Sqrt[5]),1,1}},{"N",{1/2 (-1+Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"O",{1,1/2 (1+Sqrt[5]),1}}},{{"A",{1,0,0}},{"B",{1/2 (3+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"C",{0,1,0}},{"D",{1,1/2 (3-Sqrt[5]),1}},{"E",{1/2 (-1-Sqrt[5]),1,1}},{"F",{0,0,1}},{"G",{1/2 (3+Sqrt[5]),0,1}},{"H",{0,1,1}},{"I",{0,1/2 (3-Sqrt[5]),1}},{"J",{1,2-Sqrt[5],0}},{"K",{1,0,1}},{"L",{1,1/2 (1-Sqrt[5]),0}},{"M",{1/2 (3+Sqrt[5]),1,1}},{"N",{1/2 (-1-Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"O",{1,1/2 (1-Sqrt[5]),1}}}}}
{{15,12},"DEFHBCFIAFGJBDGKACHKCEGLADILABEMBHJNCDMNEIJOKLMO",{{{"A",{2,1,1}},{"B",{0,0,1}},{"C",{0,-1,1}},{"D",{1,0,0}},{"E",{1,1/2,0}},{"F",{0,1,0}},{"G",{2,0,1}},{"H",{1,1,0}},{"I",{0,1,1}},{"J",{2,2,1}},{"K",{1,0,1}},{"L",{4,1,1}},{"M",{-2,-1,1}},{"N",{-1,-1,1}},{"O",{-8,-3,1}}}}}
{{15,12},"DEGICFHIBFGKAEJKADHLBCJLACGMBEHMABINDFJNCDKOEFLO",{{{"A",{1/2 (-1-Sqrt[5]),1,1}},{"B",{1/2 (-1-Sqrt[5]),0,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3+Sqrt[5]),0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1-Sqrt[5]),1}},{"I",{0,1,0}},{"J",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3-Sqrt[5]),1}},{"M",{-2-Sqrt[5],1,1}},{"N",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"O",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}}},{{"A",{1/2 (-1+Sqrt[5]),1,1}},{"B",{1/2 (-1+Sqrt[5]),0,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3-Sqrt[5]),0}},{"F",{0,0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1+Sqrt[5]),1}},{"I",{0,1,0}},{"J",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3+Sqrt[5]),1}},{"M",{-2+Sqrt[5],1,1}},{"N",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"O",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}}}}}
{{15,12},"DEHICFGJAEGKBFHKBGILAHJLBCEMADFMACINBDJNCDKOEFLO",{{{"A",{0,1,1}},{"B",{1/2 (1+Sqrt[5]),0,1}},{"C",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"D",{1,-1,0}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{0,1/2 (3+Sqrt[5]),1}},{"H",{1,0,0}},{"I",{1,1/2 (-1-Sqrt[5]),0}},{"J",{1/2 (-1+Sqrt[5]),1,1}},{"K",{0,0,1}},{"L",{1,1,1}},{"M",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"N",{-1,1/2 (3+Sqrt[5]),1}},{"O",{1,-1,1}}},{{"A",{0,1,1}},{"B",{1/2 (1-Sqrt[5]),0,1}},{"C",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"D",{1,-1,0}},{"E",{0,1,0}},{"F",{1,0,1}},{"G",{0,1/2 (3-Sqrt[5]),1}},{"H",{1,0,0}},{"I",{1,1/2 (-1+Sqrt[5]),0}},{"J",{1/2 (-1-Sqrt[5]),1,1}},{"K",{0,0,1}},{"L",{1,1,1}},{"M",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"N",{-1,1/2 (3-Sqrt[5]),1}},{"O",{1,-1,1}}}}}
{{15,12},"DFGIACFJBGHJBCDKAEGKADHLABIMCELMBEFNCHINDEJOFKLO",{{{"A",{0,1,1}},{"B",{-1,0,1}},{"C",{0,-1,1}},{"D",{1,-1,0}},{"E",{-1,1,1}},{"F",{0,1,0}},{"G",{1,0,0}},{"H",{1,0,1}},{"I",{1,1,0}},{"J",{0,0,1}},{"K",{-2,1,1}},{"L",{-2,3,1}},{"M",{-(2/3),1/3,1}},{"N",{-1,-2,1}},{"O",{-2,2,1}}}}}
{{15,12},"EFGHADFIBCFJACHKBGIKABELAGJMCDLMBDHNCEINDEJOFKLO",{{{"A",{0,0,1}},{"B",{1,-1,1}},{"C",{1,0,1}},{"D",{0,-1,1}},{"E",{1,-1,0}},{"F",{0,1,0}},{"G",{1,-2,0}},{"H",{1,0,0}},{"I",{0,1,1}},{"J",{1,-2,1}},{"K",{1/2,0,1}},{"L",{1/2,-(1/2),1}},{"M",{1/3,-(2/3),1}},{"N",{2,-1,1}},{"O",{1/2,-(3/2),1}}}}}
{{15,12},"EFGIABGJCFHJBEHKBDFLACKLCDGMAHIMADENBCINDJKOELMO",{{{"A",{0,1,1}},{"B",{0,1/2 (-1-Sqrt[5]),1}},{"C",{1,0,1}},{"D",{1,1/2 (-1-Sqrt[5]),1}},{"E",{1,1/2 (-3-Sqrt[5]),0}},{"F",{1,0,0}},{"G",{0,1,0}},{"H",{1/2 (1-Sqrt[5]),0,1}},{"I",{1,1/2 (1+Sqrt[5]),0}},{"J",{0,0,1}},{"K",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"L",{1/2 (3+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"M",{1,1/2 (3+Sqrt[5]),1}},{"N",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"O",{3+Sqrt[5],-2 (2+Sqrt[5]),1}}},{{"A",{0,1,1}},{"B",{0,1/2 (-1+Sqrt[5]),1}},{"C",{1,0,1}},{"D",{1,1/2 (-1+Sqrt[5]),1}},{"E",{1,1/2 (-3+Sqrt[5]),0}},{"F",{1,0,0}},{"G",{0,1,0}},{"H",{1/2 (1+Sqrt[5]),0,1}},{"I",{1,1/2 (1-Sqrt[5]),0}},{"J",{0,0,1}},{"K",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"L",{1/2 (3-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"M",{1,1/2 (3-Sqrt[5]),1}},{"N",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"O",{3-Sqrt[5],2 (-2+Sqrt[5]),1}}}}}
{{15,12},"FGHIBEGJACHJAEFKCDFLABILADGMBCKMBDHNCEINDJKOELMO",{{{"A",{0,1,1}},{"B",{1,-1,0}},{"C",{0,1/2 (-1-Sqrt[5]),1}},{"D",{-1,1,1}},{"E",{1,1/2 (1+Sqrt[5]),0}},{"F",{1/2 (1-Sqrt[5]),0,1}},{"G",{1,0,0}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (1-Sqrt[5]),1}},{"L",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"M",{1/2 (-3-Sqrt[5]),1,1}},{"N",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"O",{-1,1/2 (5+Sqrt[5]),1}}},{{"A",{0,1,1}},{"B",{1,-1,0}},{"C",{0,1/2 (-1+Sqrt[5]),1}},{"D",{-1,1,1}},{"E",{1,1/2 (1-Sqrt[5]),0}},{"F",{1/2 (1+Sqrt[5]),0,1}},{"G",{1,0,0}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (1+Sqrt[5]),1}},{"L",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"M",{1/2 (-3+Sqrt[5]),1,1}},{"N",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"O",{-1,1/2 (5-Sqrt[5]),1}}}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2019-10-21 09:51:32 | 显示全部楼层
16棵树14行和15行结果还有24组需要分析处理,其中15行为实数解,但是有理数解只有14行
  1. print(ABDHDEFIACFJBEGJBCIKCEHLDJKMBFLMCDGNAEKNFGHOAILOAGMPHINP);
  2. solve([+1/2+1*H_Y,+4+1*O_X,-6+1*P_X,+2+1*L_X,-2+1*O_Y,-2+1*N_X,+1+1*P_Y,-2+1*G_X,-1+1*K_Y,-1+1*N_Y,+1+1*B_Y,-1+1*K_X,-2+1*L_Y,-2+1*I_Y,+1+1*M_Y,+1+1*G_Y,-2+1*C_X,-1+1*M_X],[H_Y,O_X,P_X,L_X,O_Y,N_X,P_Y,G_X,K_Y,N_Y,B_Y,K_X,L_Y,I_Y,M_Y,G_Y,C_X,M_X]);
  3. print("A=(1,0,0) B=(1,B_y,0) C_y=0 D=(0,1,0) E_x=0 E_y=1 F_x=0 F_y=0 H=(1,H_y,0) I_x=0 J_x=1 J_y=0 ");
  4. print(ABDICFGIBEFJCDHJACELDFKLEHIMBCKMDEGNAJKNAFHOBGLOAGMPBHNP);
  5. solve([-3/2+1*N_X,+1/2+1*K_X,+1+1*L_X,-1/2+1*J_X,-3+1*P_X,+1+1*P_Y,+2+1*O_X,-2+1*O_Y,+1+1*A_Y,-1+1*M_X,-1+1*H_X,+2+1*D_Y,-2+1*L_Y,-2+1*G_Y,-1+1*M_Y,-1+1*K_Y,+1+1*N_Y,+1+1*H_Y],[N_X,K_X,L_X,J_X,P_X,P_Y,O_X,O_Y,A_Y,M_X,H_X,D_Y,L_Y,G_Y,M_Y,K_Y,N_Y,H_Y]);
  6. print("A=(1,A_y,0) B=(1,0,0) C_x=0 C_y=1 D=(1,D_y,0) E_x=1 E_y=0 F_x=0 F_y=0 G_x=0 I=(0,1,0) J_y=0 ");
  7. print(ABEFACDGEGHIDFJKAHJLAIKMBCLMCFHNBDINBGJOCEKODELPFGMPANOP);
  8. solve([+1-1*P_Y+1*P_Y*P_Y,+1*L_X+1*P_Y,+1+1*P_X-1*P_Y,-1+1*M_Y+1*P_Y,-1+1*F_Y+1*P_Y,+1+1*J_Y-1*P_Y,-1+1*N_Y-1*P_Y,-1+1*M_X,+1*J_X+1*P_Y,+1*H_X+1*P_Y,-1+1*K_Y,-1+1*O_Y,+1*L_Y-1*P_Y,+1*D_Y-1*P_Y,-1+1*K_X,+1*B_Y+1*P_Y,+1+1*N_X-1*P_Y,+1+1*O_X-1*P_Y],[P_Y,L_X,P_X,M_Y,F_Y,J_Y,N_Y,M_X,J_X,H_X,K_Y,O_Y,L_Y,D_Y,K_X,B_Y,N_X,O_X]);
  9. print("A=(0,1,0) B=(1,B_y,0) C_x=0 C_y=1 D_x=0 E=(1,0,0) F=(1,F_y,0) G_x=0 G_y=0 H_y=0 I_x=1 I_y=0 ");
  10. print(ABEGAFHIBCIJADJKBFKLBDHMACLMCEHNDGINEFJOCGKODELPFGMPANOP);
  11. solve([+1-1*P_Y+1/3*P_Y*P_Y,+2+1*P_X-1*P_Y,-2+1*H_Y+1*P_Y,+1+1*M_Y-1*P_Y,+1+1*D_X-1*P_Y,+2+1*N_X-2*P_Y,-1+1*I_Y,+1+1*C_X-1*P_Y,-1+1*O_X,-1+1*J_X,-1+1*D_Y,-1+1*J_Y,+1+1*L_Y-1*P_Y,+1+1*C_Y-1*P_Y,+2+1*M_X-1*P_Y,+2+1*G_X-1*P_Y,+1*N_Y-1*P_Y,+1*O_Y-1*P_Y],[P_Y,P_X,H_Y,M_Y,D_X,N_X,I_Y,C_X,O_X,J_X,D_Y,J_Y,L_Y,C_Y,M_X,G_X,N_Y,O_Y]);
  12. print("A=(1,0,0) B_x=0 B_y=0 E_x=1 E_y=0 F=(0,1,0) G_y=0 H=(1,H_y,0) I=(1,I_y,0) K_x=0 K_y=1 L_x=0 ");
  13. print(ADFHBCGHBDEIACEJBFKLCDKMAILMAGKNEHLNBJMNCFIODGJOEFGPHIJP);
  14. solve([+1-1*P_X+1*P_X*P_X,+1*O_Y-1*O_Y*P_X+1*P_X*P_X,+1+1*M_X-1*P_X,-1+1*P_Y,+1*K_X+1*P_X,+1*O_X+1*O_Y-1*P_X,-1+1*M_Y+1*P_X,+1*N_Y-1*P_X,+1*K_Y-1*P_X,-1+1*L_Y+1*P_X,+1+1*D_Y,-1+1*L_X,-1+1*I_Y+1*P_X,+1*G_Y-1*P_X,+1*F_Y+1*P_X,-1+1*N_X,+1*J_X-1*P_X,+1*I_X-1*P_X],[O_Y,P_X,M_X,P_Y,K_X,O_X,M_Y,N_Y,K_Y,L_Y,D_Y,L_X,I_Y,G_Y,F_Y,N_X,J_X,I_X]);
  15. print("A=(1,0,0) B_x=0 B_y=1 C_x=0 C_y=0 D=(1,D_y,0) E_x=1 E_y=0 F=(1,F_y,0) G_x=0 H=(0,1,0) J_y=0 ");
  16. print(ADFHBCGHCDIJBFJKAGJLEHKLBDEMAIKMACENBILNCFMODGNOEFGPHIOP);
  17. solve([+1-1/2*P_Y+1/4*P_Y*P_Y,+1+1*J_X-1/2*P_Y,-1+1*M_X+1/2*P_Y,+1+1*A_Y-1/2*P_Y,-2+1*K_Y+1/2*P_Y,-1+1*L_Y-1/2*P_Y,+1*O_Y-1/2*P_Y,+1*F_Y-1/2*P_Y,+1*L_X+1/2*P_Y,-1+1*N_X+1/2*P_Y,+1*K_X+1/2*P_Y,-1+1*E_Y,+1*N_Y-1/2*P_Y,+1*G_Y-1/2*P_Y,+1*E_X+1/2*P_Y,-1+1*M_Y,-1+1*P_X,-1+1*O_X],[P_Y,J_X,M_X,A_Y,K_Y,L_Y,O_Y,F_Y,L_X,N_X,K_X,E_Y,N_Y,G_Y,E_X,M_Y,P_X,O_X]);
  18. print("A=(1,A_y,0) B_x=0 B_y=1 C_x=0 C_y=0 D=(1,0,0) F=(1,F_y,0) G_x=0 H=(0,1,0) I_x=1 I_y=0 J_y=0 ");
  19. print(ADFIBCGIBFHJAGHKEIJKCDHLBDEMAJLMACENBKLNCFMODGNOEFGPABOP);
  20. solve([+1-1*P_Y+1*P_Y*P_Y,-1+1*N_X-1*P_Y,+1*P_X-1*P_Y,+1*M_Y-1*P_Y,+1+1*L_Y-1*P_Y,+1*N_Y-1*P_Y,+1+1*O_Y-1*P_Y,-1+1*G_Y,+1*H_Y+1*P_Y,-1+1*K_X-1*P_Y,-1+1*M_X,-1+1*K_Y,-1+1*E_X,+1*C_Y-1*P_Y,-1+1*L_X-1*P_Y,-1+1*E_Y,+1*O_X-1*P_Y,+1*A_X-1*P_Y],[P_Y,N_X,P_X,M_Y,L_Y,N_Y,O_Y,G_Y,H_Y,K_X,M_X,K_Y,E_X,C_Y,L_X,E_Y,O_X,A_X]);
  21. print("A_y=0 B=(0,1,0) C=(1,C_y,0) D_x=1 D_y=0 F_x=0 F_y=0 G=(1,G_y,0) H_x=0 I=(1,0,0) J_x=0 J_y=1 ");
  22. print(AEIJBEGKCFIKDEHLCGJLAFGMBHIMACHNBDJNADKOBFLOCDMPEFNPGHOP);
  23. solve([+1+1*M_Y*P_Y-1*P_Y*P_Y,+1*B_X-1*B_X*K_X-1*B_X*K_Y-1*O_X+1*K_X*O_X+1*O_Y+1*K_X*O_Y-2*P_Y+1*K_X*P_Y+1*K_Y*P_Y+1*M_Y*P_Y-1*P_Y*P_Y,+1*K_X+1/2*O_X-1/2*K_X*O_X-1/2*O_Y-1/2*K_X*O_Y+1*P_Y-1/2*K_X*P_Y+1/2*M_Y*P_Y-1/2*P_Y*P_Y,+1*K_X*K_X+1*K_X*K_Y+1*O_X-1*K_X*O_X-1*O_Y-1*K_X*O_Y+2*P_Y-1*K_X*P_Y,+1*K_Y+1/2*O_X-1/2*K_X*O_X-1/2*O_Y-1/2*K_X*O_Y+1*P_Y-1/2*K_X*P_Y-1*K_Y*P_Y+1/2*M_Y*P_Y-1/2*P_Y*P_Y,+1*M_Y-1*O_X+1*K_X*O_X+1*O_Y+1*K_X*O_Y-1*P_Y,+1*B_X*M_Y+1*P_Y-1*B_X*P_Y+1*M_Y*P_Y-1*P_Y*P_Y,+1*K_X*M_Y-1/2*O_X+1/2*K_X*O_X+1/2*O_Y+1/2*K_X*O_Y-1/2*K_X*P_Y+1/2*M_Y*P_Y-1/2*P_Y*P_Y,+1*K_Y*O_X-1*K_X*O_Y,+1*M_Y*O_X-1*O_Y+1*P_Y-1*O_X*P_Y,-1+1*G_Y+1*K_X+1*K_Y,+1*L_Y-1*M_Y+1*P_Y,-1+1*D_Y,+1*I_X-1*K_X,-1+1*F_Y+1*K_X,-1+1*D_X+1*P_Y,-1+1*M_X+1*P_Y,+1*F_X-1*K_X,-1+1*P_X+1*P_Y,-1+1*B_Y,+1*H_Y+1*M_Y-1*P_Y],[B_X,K_X,K_Y,M_Y,O_X,O_Y,P_Y,G_Y,L_Y,D_Y,I_X,F_Y,D_X,M_X,F_X,P_X,B_Y,H_Y]);
  24. print("A_x=0 A_y=0 C=(0,1,0) E_x=1 E_y=0 G=(1,G_y,0) H_x=0 I_y=0 J=(1,0,0) L=(1,L_y,0) N_x=0 N_y=1 ");
  25. print(BCEGAFGHBDHIAEIJACDLBFJLABKMCHKNDEMNCFIODGJOEFKPGLMPANOP);
  26. solve([+1-1/2*P_Y+1/4*P_Y*P_Y,+1*N_Y+1/2*P_Y,+1*P_X+1/2*P_Y,-1+1*N_X,+1+1*O_Y-1/2*P_Y,-1+1*O_X+1/2*P_Y,+1*L_Y-1/2*P_Y,+1+1*K_X-1/2*P_Y,+1*C_Y+1/2*P_Y,+1*J_Y-1/2*P_Y,-1+1*J_X+1/2*P_Y,-1+1*D_X+1/2*P_Y,+1*F_Y-1/2*P_Y,+1+1*E_Y,+1*M_X+1/2*P_Y,+1*L_X+1/2*P_Y,-1+1*K_Y,-1+1*M_Y],[P_Y,N_Y,P_X,N_X,O_Y,O_X,L_Y,K_X,C_Y,J_Y,J_X,D_X,F_Y,E_Y,M_X,L_X,K_Y,M_Y]);
  27. print("A_x=0 A_y=1 B=(1,0,0) C=(1,C_y,0) D_y=0 E=(1,E_y,0) F_x=0 G=(0,1,0) H_x=0 H_y=0 I_x=1 I_y=0 ");
  28. print(BCGIADHIDFGKBEJKCEHLAFJLEFIMCDJMACKNBDLNAEGOBFHOABMPGHNP);
  29. solve([+1+1*P_Y-1*P_Y*P_Y,+1*O_X-2*P_Y+1*O_X*P_Y+1*P_Y*P_Y,+1*P_X+2*P_Y+1*P_X*P_Y-1*P_Y*P_Y,-1+1*L_Y-1*P_Y,+1*J_Y+1*P_Y,+1*J_X-1*P_Y,-1+1*M_Y+1*P_Y,+1+1*B_Y+1*P_Y,-1+1*N_X+1*P_Y,+1+1*M_X-1*P_Y,+1+1*L_X,-1+1*O_Y,+1+1*F_X-1*P_Y,+1+1*E_X-1*P_Y,+1+1*C_Y,-1+1*E_Y,+1*N_Y-1*P_Y,+1*H_Y-1*P_Y],[O_X,P_X,P_Y,L_Y,J_Y,J_X,M_Y,B_Y,N_X,M_X,L_X,O_Y,F_X,E_X,C_Y,E_Y,N_Y,H_Y]);
  30. print("A_x=0 A_y=1 B=(1,B_y,0) C=(1,C_y,0) D_x=0 D_y=0 F_y=0 G=(1,0,0) H_x=0 I=(0,1,0) K_x=1 K_y=0 ");
  31. print(BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNP);
  32. solve([+1+4*P_Y-1*P_Y*P_Y,+3/2+1*J_Y-1/2*P_Y,-1/2+1*P_X+1/2*P_Y,+1/2+1*O_Y+1/2*P_Y,+1+1*L_Y,-1/2+1*M_Y-1/2*P_Y,-3/2+1*H_Y+1/2*P_Y,+1/2+1*N_Y-1/2*P_Y,-1/2+1*O_X-1/2*P_Y,-1+1*N_X,+1+1*C_Y,-1+1*J_X,-1/2+1*L_X-1/2*P_Y,-1/2+1*D_X-1/2*P_Y,-1/2+1*M_X+1/2*P_Y,-1/2+1*A_X+1/2*P_Y,+1/2+1*E_Y-1/2*P_Y,+1/2+1*A_Y-1/2*P_Y],[P_Y,J_Y,P_X,O_Y,L_Y,M_Y,H_Y,N_Y,O_X,N_X,C_Y,J_X,L_X,D_X,M_X,A_X,E_Y,A_Y]);
  33. print("B=(0,1,0) C=(1,C_y,0) D_y=0 E_x=0 F_x=1 F_y=0 G_x=0 G_y=1 H=(1,H_y,0) I=(1,0,0) K_x=0 K_y=0 ");
  34. print(BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNPEFOP);
  35. solve([+1-3*P_Y+1*P_Y*P_Y,-3+1*J_Y+1*P_Y,-2+1*L_Y+1*P_Y,+1+1*M_Y-1*P_Y,+3+1*H_Y-1*P_Y,+2+1*G_Y-1*P_Y,-1+1*O_Y+1*P_Y,-1+1*J_X,-1+1*N_Y,-1+1*N_X,+1*L_X-1*P_Y,+1*D_X-1*P_Y,-1+1*M_X+1*P_Y,-1+1*A_X+1*P_Y,-2+1*C_Y+1*P_Y,-1+1*A_Y,-1+1*P_X+1*P_Y,+1*O_X-1*P_Y],[P_Y,J_Y,L_Y,M_Y,H_Y,G_Y,O_Y,J_X,N_Y,N_X,L_X,D_X,M_X,A_X,C_Y,A_Y,P_X,O_X]);
  36. print("B=(0,1,0) C=(1,C_y,0) D_y=0 E_x=0 E_y=1 F_x=1 F_y=0 G_x=0 H=(1,H_y,0) I=(1,0,0) K_x=0 K_y=0 ");
  37. print(BEFHACEIBDGIADHJCDFKEGJKCGHLFIJLABKLBCMNDEMOAFNOAGMPHINPBJOP);
  38. solve([+1-1*P_Y+1*P_Y*P_Y,-1+1*L_X+1*P_Y,+1+1*N_X,+1*F_Y-1*P_Y,+1*O_X-1*P_Y,-1+1*K_Y,-1+1*N_Y+1*P_Y,+1+1*H_Y-1*P_Y,-1+1*M_Y+1*P_Y,+1*D_X-1*P_Y,-1+1*C_Y+1*P_Y,-1+1*K_X,+1*M_X-1*P_Y,-1+1*P_X+1*P_Y,-1+1*J_X,-1+1*L_Y,+1*J_Y-1*P_Y,+1*O_Y-1*P_Y],[P_Y,L_X,N_X,F_Y,O_X,K_Y,N_Y,H_Y,M_Y,D_X,C_Y,K_X,M_X,P_X,J_X,L_Y,J_Y,O_Y]);
  39. print("A_x=0 A_y=1 B=(1,0,0) C_x=0 D_y=0 E=(0,1,0) F=(1,F_y,0) G_x=1 G_y=0 H=(1,H_y,0) I_x=0 I_y=0 ");
  40. print(CDEFBEGHBFIJCGIKDHJKAFGLACHMADINBCLNAEJOBDMOABKPELMPFNOP);
  41. solve([+1-1*P_Y-1*P_Y*P_Y,+1*I_X+1*P_Y,-1+1*N_X+1*P_Y,+1+1*K_Y+1*P_Y,-1+1*M_Y+1*P_Y,-1+1*C_Y-1*P_Y,+1+1*K_X+1*P_Y,+1*H_Y+1*P_Y,+1*P_X-1*P_Y,-1+1*O_X,-1+1*L_Y,+1*D_Y-1*P_Y,-1+1*A_Y,-1+1*A_X,+1*L_X-1*P_Y,+1*M_X-1*P_Y,+1*N_Y-1*P_Y,+1*O_Y-1*P_Y],[P_Y,I_X,N_X,K_Y,M_Y,C_Y,K_X,H_Y,P_X,O_X,L_Y,D_Y,A_Y,A_X,L_X,M_X,N_Y,O_Y]);
  42. print("B_x=0 B_y=0 C=(1,C_y,0) D=(1,D_y,0) E=(0,1,0) F=(1,0,0) G_x=0 G_y=1 H_x=0 I_y=0 J_x=1 J_y=0 ");
  43. print(CDFGCEHJBDIJBFHKEGIKADHLABGMAEFNBCLNACIODEMOAJKPFLMPGNOP);
  44. solve([+1-3/2*P_Y+1/4*P_Y*P_Y,+1*K_Y-1/2*P_Y,+1*P_X-1*P_Y,-1+1*O_X+1/2*P_Y,+1*K_X-1/2*P_Y,+1*M_X-1/2*P_Y,+1*N_Y-1/2*P_Y,-1+1*L_Y+1/2*P_Y,+2+1*G_Y-1/2*P_Y,-1+1*I_X+1/2*P_Y,-1+1*M_Y,-1+1*O_Y,-1+1*A_Y+1/2*P_Y,-1+1*A_X+1/2*P_Y,+1+1*F_Y-1/2*P_Y,-1+1*H_Y+1/2*P_Y,-1+1*N_X,-1+1*L_X],[P_Y,K_Y,P_X,O_X,K_X,M_X,N_Y,L_Y,G_Y,I_X,M_Y,O_Y,A_Y,A_X,F_Y,H_Y,N_X,L_X]);
  45. print("B_x=1 B_y=0 C=(0,1,0) D=(1,0,0) E_x=0 E_y=1 F=(1,F_y,0) G=(1,G_y,0) H_x=0 I_y=0 J_x=0 J_y=0 ");
  46. print(CDFJDEHKCGIKBFHLADILBDGMAEJMBCENAFGNACHOBIJOABKPCLMPDNOP);
  47. solve([+1-1*P_Y+1/3*P_Y*P_Y,+1+1*L_X-1*P_Y,+1+1*O_Y-1*P_Y,-2+1*F_Y+1*P_Y,+1+1*J_Y-1*P_Y,+1*P_X-1*P_Y,+1+1*I_X-1*P_Y,-1+1*B_X,+1+1*A_Y-1*P_Y,+1+1*H_Y-1*P_Y,+1+1*A_X-1*P_Y,-1+1*M_X,-1+1*B_Y,-1+1*N_Y,+1*M_Y-1*P_Y,+1*L_Y-1*P_Y,+1*N_X-1*P_Y,+1*O_X-1*P_Y],[P_Y,L_X,O_Y,F_Y,J_Y,P_X,I_X,B_X,A_Y,H_Y,A_X,M_X,B_Y,N_Y,M_Y,L_Y,N_X,O_X]);
  48. print("C=(1,0,0) D=(0,1,0) E_x=0 E_y=1 F=(1,F_y,0) G_x=1 G_y=0 H_x=0 I_y=0 J=(1,J_y,0) K_x=0 K_y=0 ");
  49. print(CDHICEFJABHJBEGKAGILDFKLBFIMACKMADENBCLNDGJOEHMOFGHPIJNP);
  50. solve([+1+3*O_Y+1*O_Y*O_Y,+1*M_Y+1*O_Y,+1+1*K_X,+1+1*O_X+1*O_Y,+2+1*L_X+1*O_Y,-1+1*M_X-1*O_Y,-1+1*E_Y-1*O_Y,-1+1*G_Y-1*O_Y,+1+1*P_Y,-1+1*L_Y,+1+1*G_X+1*O_Y,+1+1*D_X+1*O_Y,+1*K_Y+1*O_Y,+1+1*F_Y,+1*A_Y+1*O_Y,-1+1*N_Y,-1+1*N_X,-1+1*P_X],[O_Y,M_Y,K_X,O_X,L_X,M_X,E_Y,G_Y,P_Y,L_Y,G_X,D_X,K_Y,F_Y,A_Y,N_Y,N_X,P_X]);
  51. print("A_x=0 B_x=0 B_y=1 C=(1,0,0) D_y=0 E=(1,E_y,0) F=(1,F_y,0) H_x=0 H_y=0 I_x=1 I_y=0 J=(0,1,0) ");
  52. print(CEFHABEICDGIBDFJBGHKACJKADHLEGJLFIKLBCMNDEMOAFNOAGMPHINP);
  53. solve([+1+1*P_Y+1*O_Y*P_Y,+1*O_Y+1*O_Y*O_Y-1*P_Y-1*O_Y*P_Y,+1*P_X+1*O_Y*P_X+1*P_Y,+1*L_Y-1*O_Y,+1*N_X-1*O_Y,+1*L_X+1*O_Y,-1+1*K_Y-1*O_Y,+1+1*K_X+1*O_Y,-1+1*N_Y,-1+1*M_Y,-1+1*O_X,-1+1*M_X,-1+1*J_Y-1*O_Y,+1*J_X+1*O_Y,+1+1*F_Y,+1+1*H_Y+1*O_Y,-1+1*A_Y-1*O_Y,+1*G_X+1*O_Y],[O_Y,P_X,P_Y,L_Y,N_X,L_X,K_Y,K_X,N_Y,M_Y,O_X,M_X,J_Y,J_X,F_Y,H_Y,A_Y,G_X]);
  54. print("A_x=0 B_x=0 B_y=1 C=(1,0,0) D_x=1 D_y=0 E=(0,1,0) F=(1,F_y,0) G_y=0 H=(1,H_y,0) I_x=0 I_y=0 ");
  55. print(CFHIDEGJAEIKBFJKBGILAHJLBCEMADFMACGNBDHNCDKOEFLOGHMPIJNP);
  56. solve([+1-3*P_Y+1*P_Y*P_Y,+1+1*O_Y,+4+1*O_X-2*P_Y,-3+1*B_X+1*P_Y,+2+1*M_Y-1*P_Y,+2+1*M_X-1*P_Y,-1+1*K_Y+2*P_Y,+1+1*D_Y-1*P_Y,-1+1*E_Y+1*P_Y,+1*P_X-1*P_Y,-1+1*G_Y,+2+1*F_X-1*P_Y,-1+1*B_Y,-1+1*N_X,-1+1*G_X,+2+1*D_X-1*P_Y,+1*N_Y-1*P_Y,+1*J_Y-1*P_Y],[P_Y,O_Y,O_X,B_X,M_Y,M_X,K_Y,D_Y,E_Y,P_X,G_Y,F_X,B_Y,N_X,G_X,D_X,N_Y,J_Y]);
  57. print("A=(0,1,0) C_x=1 C_y=0 E=(1,E_y,0) F_y=0 H_x=0 H_y=0 I=(1,0,0) J_x=0 K=(1,K_y,0) L_x=0 L_y=1 ");
  58. print(DEFICGHIBCFJADHJACEKBDGKABILEGJLFHKLCDMNBEMOAFNOAGMPBHNP);
  59. solve([+1-2*P_X+4*P_X*P_X,+1*O_Y+2*P_X-2*O_Y*P_X,-1/2+1*P_Y,+1*N_Y-2*P_X,-1+1*L_Y+2*P_X,-1+1*M_X,+1+1*N_X-2*P_X,-1+1*O_X+1*O_Y-2*P_X,+1+1*K_X-2*P_X,+1*L_X-2*P_X,-1+1*B_Y,+1+1*E_Y,+1*F_Y+2*P_X,+1*B_X-2*P_X,+1*M_Y-2*P_X,+1*A_X-2*P_X,+1*C_Y-2*P_X,-1+1*K_Y],[O_Y,P_X,P_Y,N_Y,L_Y,M_X,N_X,O_X,K_X,L_X,B_Y,E_Y,F_Y,B_X,M_Y,A_X,C_Y,K_Y]);
  60. print("A_y=0 C_x=0 D=(1,0,0) E=(1,E_y,0) F=(1,F_y,0) G_x=0 G_y=1 H_x=0 H_y=0 I=(0,1,0) J_x=1 J_y=0 ");
  61. print(DEGICFGJAHIJBDFKABGLCDHLBEHMACKMBCINEJKNFLMOADNOAEFPGHOP);
  62. solve([+1+3*O_Y+1*O_Y*O_Y,+2+1*M_Y+1*O_Y,-2+1*M_X-1*O_Y,-3+1*K_Y-1*O_Y,+1+1*K_X,-2+1*F_Y-1*O_Y,+1*L_Y+1*O_Y,+1+1*P_Y,+1*N_X-1*O_Y,-1+1*L_X-1*O_Y,+3+1*E_Y+1*O_Y,-1+1*N_Y,+1+1*D_Y,-1+1*B_Y,-1+1*B_X-1*O_Y,-1+1*A_X-1*O_Y,-1+1*P_X,-1+1*O_X],[O_Y,M_Y,M_X,K_Y,K_X,F_Y,L_Y,P_Y,N_X,L_X,E_Y,N_Y,D_Y,B_Y,B_X,A_X,P_X,O_X]);
  63. print("A_y=0 C_x=0 C_y=1 D=(1,D_y,0) E=(1,E_y,0) F_x=0 G=(0,1,0) H_x=1 H_y=0 I=(1,0,0) J_x=0 J_y=0 ");
  64. print(DFGICEHJBEIKAFJKBCGLADHLACIMBDJMAEGNBFHNCDKOEFLOGHMPIJNP);
  65. solve([+1+1*P_Y-1*P_Y*P_Y,+1*P_X+2*P_Y+1*P_X*P_Y-1*P_Y*P_Y,-1+1*H_Y-1*P_Y,+1*L_Y+1*P_Y,+1*M_X+1*P_X,-1+1*O_Y+1*P_Y,+1+1*B_Y+1*P_Y,+1+1*H_X,-1+1*N_X+1*P_Y,+1+1*O_X-1*P_Y,+1*L_X-1*P_Y,+1+1*C_X-1*P_Y,-1+1*M_Y,-1+1*C_Y,+1+1*D_X-1*P_Y,+1+1*E_Y,+1*N_Y-1*P_Y,+1*J_Y-1*P_Y],[P_X,P_Y,H_Y,L_Y,M_X,O_Y,B_Y,H_X,N_X,O_X,L_X,C_X,M_Y,C_Y,D_X,E_Y,N_Y,J_Y]);
  66. print("A_x=0 A_y=1 B=(1,B_y,0) D_y=0 E=(1,E_y,0) F_x=0 F_y=0 G_x=1 G_y=0 I=(1,0,0) J_x=0 K=(0,1,0) ");
  67. print(DFGICEHJBEIKAFJKBCGLADHLACIMBDJMCDKNEFLNAEGOBFHOGHMPABNPIJOP);
  68. solve([+1-7*P_Y+1*P_Y*P_Y,+1*N_X+21*P_Y+1*N_X*P_Y-3*P_Y*P_Y,+1+1*L_X,-1/3+1*O_Y-1/3*P_Y,+1/3+1*M_Y-2/3*P_Y,-5/3+1*M_X+1/3*P_Y,+2/3+1*G_Y-1/3*P_Y,-1+1*L_Y,-2/3+1*H_X+1/3*P_Y,-1+1*N_Y,-1/3+1*H_Y-1/3*P_Y,+1/3+1*D_Y+1/3*P_Y,-1/3+1*B_Y-1/3*P_Y,+2/3+1*C_Y-1/3*P_Y,-5/3+1*C_X+1/3*P_Y,-5/3+1*A_X+1/3*P_Y,-1+1*O_X,-1+1*P_X],[N_X,P_Y,L_X,O_Y,M_Y,M_X,G_Y,L_Y,H_X,N_Y,H_Y,D_Y,B_Y,C_Y,C_X,A_X,O_X,P_X]);
  69. print("A_y=0 B_x=0 D=(1,D_y,0) E_x=0 E_y=1 F=(1,0,0) G=(1,G_y,0) I=(0,1,0) J_x=1 J_y=0 K_x=0 K_y=0 ");
  70. print(EFHIADIJDFGKABHKACGLBEJLBGIMCFJMCEKNDHLNBCDOAEMOAFNPGHOP);
  71. solve([+1+1*P_Y*P_Y,-1+1*O_Y-1*P_Y,-1/2+1*B_X+1/2*P_Y,-1/2+1*L_X,-1/2+1*P_X-1/2*P_Y,-1/2+1*O_X,+1*M_Y-2*P_Y,+1+1*K_Y-1*P_Y,-2+1*E_Y,+1*G_Y-2*P_Y,-1+1*C_Y-1*P_Y,-1+1*B_Y-1*P_Y,-1+1*C_X,-1+1*M_X,-1/2+1*N_X-1/2*P_Y,-1/2+1*A_X-1/2*P_Y,-1+1*N_Y,-1+1*L_Y],[P_Y,O_Y,B_X,L_X,P_X,O_X,M_Y,K_Y,E_Y,G_Y,C_Y,B_Y,C_X,M_X,N_X,A_X,N_Y,L_Y]);
  72. print("A_y=0 D=(1,0,0) E_x=0 F=(0,1,0) G=(1,G_y,0) H_x=0 H_y=1 I_x=0 I_y=0 J_x=1 J_y=0 K=(1,K_y,0) ");
复制代码



===========
wayne实数解:
{{16,14},"ABDHDEFIACFJBEGJBCIKCEHLDJKMBFLMCDGNAEKNFGHOAILOAGMPHINP",{{{"A",{1,0,0}},{"B",{1,-1,0}},{"C",{2,0,1}},{"D",{0,1,0}},{"E",{0,1,1}},{"F",{0,0,1}},{"G",{2,-1,1}},{"H",{1,-(1/2),0}},{"I",{0,2,1}},{"J",{1,0,1}},{"K",{1,1,1}},{"L",{-2,2,1}},{"M",{1,-1,1}},{"N",{2,1,1}},{"O",{-4,2,1}},{"P",{6,-1,1}}}}}
{{16,14},"ABDICFGIBEFJCDHJACELDFKLEHIMBCKMDEGNAJKNAFHOBGLOAGMPBHNP",{{{"A",{1,-1,0}},{"B",{1,0,0}},{"C",{0,1,1}},{"D",{1,-2,0}},{"E",{1,0,1}},{"F",{0,0,1}},{"G",{0,2,1}},{"H",{1,-1,1}},{"I",{0,1,0}},{"J",{1/2,0,1}},{"K",{-(1/2),1,1}},{"L",{-1,2,1}},{"M",{1,1,1}},{"N",{3/2,-1,1}},{"O",{-2,2,1}},{"P",{3,-1,1}}}}}
{{16,14},"AEIJBEGKCFIKDEHLCGJLAFGMBHIMACHNBDJNADKOBFLOCDMPEFNPGHOP",{{{"A",{0,0,1}},{"B",{1+Root[1+2 #1+#1^2+#1^3&,1,0],1,1}},{"C",{0,1,0}},{"D",{Root[1+2 #1-3 #1^2+#1^3&,1,0],1,1}},{"E",{1,0,1}},{"F",{Root[1-#1+#1^3&,1,0],Root[-1+2 #1-3 #1^2+#1^3&,1,0],1}},{"G",{1,Root[1+#1+2 #1^2+#1^3&,1,0],0}},{"H",{0,Root[-1+#1^2+#1^3&,1,0],1}},{"I",{Root[1-#1+#1^3&,1,0],0,1}},{"J",{1,0,0}},{"K",{Root[1-#1+#1^3&,1,0],Root[-1+4 #1-5 #1^2+#1^3&,1,0],1}},{"L",{1,Root[1-#1^2+#1^3&,1,0],0}},{"M",{Root[1+2 #1-3 #1^2+#1^3&,1,0],Root[-1+2 #1-#1^2+#1^3&,1,0],1}},{"N",{0,1,1}},{"O",{Root[1+2 #1+#1^2+#1^3&,1,0],Root[-1+#1-2 #1^2+#1^3&,1,0],1}},{"P",{Root[1+2 #1-3 #1^2+#1^3&,1,0],Root[-1-#1+#1^3&,1,0],1}}}}}
{{16,14},"BCGIADHIDFGKBEJKCEHLAFJLEFIMCDJMACKNBDLNAEGOBFHOABMPGHNP",{{{"A",{0,1,1}},{"B",{1,1/2 (-3+Sqrt[5]),0}},{"C",{1,-1,0}},{"D",{0,0,1}},{"E",{1/2 (-1-Sqrt[5]),1,1}},{"F",{1/2 (-1-Sqrt[5]),0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1-Sqrt[5]),1}},{"I",{0,1,0}},{"J",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3-Sqrt[5]),1}},{"M",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"N",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"O",{-2-Sqrt[5],1,1}},{"P",{2+Sqrt[5],1/2 (1-Sqrt[5]),1}}},{{"A",{0,1,1}},{"B",{1,1/2 (-3-Sqrt[5]),0}},{"C",{1,-1,0}},{"D",{0,0,1}},{"E",{1/2 (-1+Sqrt[5]),1,1}},{"F",{1/2 (-1+Sqrt[5]),0,1}},{"G",{1,0,0}},{"H",{0,1/2 (1+Sqrt[5]),1}},{"I",{0,1,0}},{"J",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"K",{1,0,1}},{"L",{-1,1/2 (3+Sqrt[5]),1}},{"M",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"N",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"O",{-2+Sqrt[5],1,1}},{"P",{2-Sqrt[5],1/2 (1+Sqrt[5]),1}}}}}
{{16,14},"BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNP",{{{"A",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"B",{0,1,0}},{"C",{1,-1,0}},{"D",{1/2 (3-Sqrt[5]),0,1}},{"E",{0,1/2 (1-Sqrt[5]),1}},{"F",{1,0,1}},{"G",{0,1,1}},{"H",{1,1/2 (1+Sqrt[5]),0}},{"I",{1,0,0}},{"J",{1,1/2 (-1-Sqrt[5]),1}},{"K",{0,0,1}},{"L",{1/2 (3-Sqrt[5]),-1,1}},{"M",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"N",{1,1/2 (1-Sqrt[5]),1}},{"O",{1/2 (3-Sqrt[5]),1/2 (-3+Sqrt[5]),1}},{"P",{1/2 (-1+Sqrt[5]),2-Sqrt[5],1}}},{{"A",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"B",{0,1,0}},{"C",{1,-1,0}},{"D",{1/2 (3+Sqrt[5]),0,1}},{"E",{0,1/2 (1+Sqrt[5]),1}},{"F",{1,0,1}},{"G",{0,1,1}},{"H",{1,1/2 (1-Sqrt[5]),0}},{"I",{1,0,0}},{"J",{1,1/2 (-1+Sqrt[5]),1}},{"K",{0,0,1}},{"L",{1/2 (3+Sqrt[5]),-1,1}},{"M",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"N",{1,1/2 (1+Sqrt[5]),1}},{"O",{1/2 (3+Sqrt[5]),1/2 (-3-Sqrt[5]),1}},{"P",{1/2 (-1-Sqrt[5]),2+Sqrt[5],1}}}}}
{{16,15},"BCHIADGJBEGKDFIKAFHLCEJLCFGMDEHMAEINBFJNACKOBDLOABMPCDNPEFOP",{{{"A",{1/2 (-1+Sqrt[5]),1,1}},{"B",{0,1,0}},{"C",{1,1/2 (1+Sqrt[5]),0}},{"D",{1/2 (3-Sqrt[5]),0,1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{0,1/2 (-1-Sqrt[5]),1}},{"H",{1,1/2 (-3-Sqrt[5]),0}},{"I",{1,0,0}},{"J",{1,1/2 (3+Sqrt[5]),1}},{"K",{0,0,1}},{"L",{1/2 (3-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"M",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"N",{1,1,1}},{"O",{1/2 (3-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"P",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}}},{{"A",{1/2 (-1-Sqrt[5]),1,1}},{"B",{0,1,0}},{"C",{1,1/2 (1-Sqrt[5]),0}},{"D",{1/2 (3+Sqrt[5]),0,1}},{"E",{0,1,1}},{"F",{1,0,1}},{"G",{0,1/2 (-1+Sqrt[5]),1}},{"H",{1,1/2 (-3+Sqrt[5]),0}},{"I",{1,0,0}},{"J",{1,1/2 (3-Sqrt[5]),1}},{"K",{0,0,1}},{"L",{1/2 (3+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"M",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"N",{1,1,1}},{"O",{1/2 (3+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"P",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}}}}}
{{16,14},"CDEFBEGHBFIJCGIKDHJKAFGLACHMADINBCLNAEJOBDMOABKPELMPFNOP",{{{"A",{1,1,1}},{"B",{0,0,1}},{"C",{1,1/2 (1-Sqrt[5]),0}},{"D",{1,1/2 (-1-Sqrt[5]),0}},{"E",{0,1,0}},{"F",{1,0,0}},{"G",{0,1,1}},{"H",{0,1/2 (1+Sqrt[5]),1}},{"I",{1/2 (1+Sqrt[5]),0,1}},{"J",{1,0,1}},{"K",{1/2 (-1+Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"L",{1/2 (-1-Sqrt[5]),1,1}},{"M",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"N",{1/2 (3+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"O",{1,1/2 (-1-Sqrt[5]),1}},{"P",{1/2 (-1-Sqrt[5]),1/2 (-1-Sqrt[5]),1}}},{{"A",{1,1,1}},{"B",{0,0,1}},{"C",{1,1/2 (1+Sqrt[5]),0}},{"D",{1,1/2 (-1+Sqrt[5]),0}},{"E",{0,1,0}},{"F",{1,0,0}},{"G",{0,1,1}},{"H",{0,1/2 (1-Sqrt[5]),1}},{"I",{1/2 (1-Sqrt[5]),0,1}},{"J",{1,0,1}},{"K",{1/2 (-1-Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"L",{1/2 (-1+Sqrt[5]),1,1}},{"M",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"N",{1/2 (3-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"O",{1,1/2 (-1+Sqrt[5]),1}},{"P",{1/2 (-1+Sqrt[5]),1/2 (-1+Sqrt[5]),1}}}}}
{{16,14},"CDFGCEHJBDIJBFHKEGIKADHLABGMAEFNBCLNACIODEMOAJKPFLMPGNOP",{{{"A",{1/2 (-1-Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"B",{1,0,1}},{"C",{0,1,0}},{"D",{1,0,0}},{"E",{0,1,1}},{"F",{1,1/2 (1+Sqrt[5]),0}},{"G",{1,1/2 (-1+Sqrt[5]),0}},{"H",{0,1/2 (-1-Sqrt[5]),1}},{"I",{1/2 (-1-Sqrt[5]),0,1}},{"J",{0,0,1}},{"K",{1/2 (3+Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"L",{1,1/2 (-1-Sqrt[5]),1}},{"M",{1/2 (3+Sqrt[5]),1,1}},{"N",{1,1/2 (3+Sqrt[5]),1}},{"O",{1/2 (-1-Sqrt[5]),1,1}},{"P",{3+Sqrt[5],3+Sqrt[5],1}}},{{"A",{1/2 (-1+Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"B",{1,0,1}},{"C",{0,1,0}},{"D",{1,0,0}},{"E",{0,1,1}},{"F",{1,1/2 (1-Sqrt[5]),0}},{"G",{1,1/2 (-1-Sqrt[5]),0}},{"H",{0,1/2 (-1+Sqrt[5]),1}},{"I",{1/2 (-1+Sqrt[5]),0,1}},{"J",{0,0,1}},{"K",{1/2 (3-Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"L",{1,1/2 (-1+Sqrt[5]),1}},{"M",{1/2 (3-Sqrt[5]),1,1}},{"N",{1,1/2 (3-Sqrt[5]),1}},{"O",{1/2 (-1+Sqrt[5]),1,1}},{"P",{3-Sqrt[5],3-Sqrt[5],1}}}}}
{{16,14},"CDHICEFJABHJBEGKAGILDFKLBFIMACKMADENBCLNDGJOEHMOFGHPIJNP",{{{"A",{0,1/2 (3-Sqrt[5]),1}},{"B",{0,1,1}},{"C",{1,0,0}},{"D",{1/2 (1-Sqrt[5]),0,1}},{"E",{1,1/2 (-1+Sqrt[5]),0}},{"F",{1,-1,0}},{"G",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (3-Sqrt[5]),1}},{"L",{1/2 (-1-Sqrt[5]),1,1}},{"M",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"N",{1,1,1}},{"O",{1/2 (1-Sqrt[5]),1/2 (-3+Sqrt[5]),1}},{"P",{1,-1,1}}},{{"A",{0,1/2 (3+Sqrt[5]),1}},{"B",{0,1,1}},{"C",{1,0,0}},{"D",{1/2 (1+Sqrt[5]),0,1}},{"E",{1,1/2 (-1-Sqrt[5]),0}},{"F",{1,-1,0}},{"G",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"H",{0,0,1}},{"I",{1,0,1}},{"J",{0,1,0}},{"K",{-1,1/2 (3+Sqrt[5]),1}},{"L",{1/2 (-1+Sqrt[5]),1,1}},{"M",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"N",{1,1,1}},{"O",{1/2 (1+Sqrt[5]),1/2 (-3-Sqrt[5]),1}},{"P",{1,-1,1}}}}}
{{16,14},"CFHIDEGJAEIKBFJKBGILAHJLBCEMADFMACGNBDHNCDKOEFLOGHMPIJNP",{{{"A",{0,1,0}},{"B",{1/2 (3+Sqrt[5]),1,1}},{"C",{1,0,1}},{"D",{1/2 (-1-Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"E",{1,1/2 (-1+Sqrt[5]),0}},{"F",{1/2 (-1-Sqrt[5]),0,1}},{"G",{1,1,1}},{"H",{0,0,1}},{"I",{1,0,0}},{"J",{0,1/2 (3-Sqrt[5]),1}},{"K",{1,-2+Sqrt[5],0}},{"L",{0,1,1}},{"M",{1/2 (-1-Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"N",{1,1/2 (3-Sqrt[5]),1}},{"O",{-1-Sqrt[5],-1,1}},{"P",{1/2 (3-Sqrt[5]),1/2 (3-Sqrt[5]),1}}},{{"A",{0,1,0}},{"B",{1/2 (3-Sqrt[5]),1,1}},{"C",{1,0,1}},{"D",{1/2 (-1+Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"E",{1,1/2 (-1-Sqrt[5]),0}},{"F",{1/2 (-1+Sqrt[5]),0,1}},{"G",{1,1,1}},{"H",{0,0,1}},{"I",{1,0,0}},{"J",{0,1/2 (3+Sqrt[5]),1}},{"K",{1,-2-Sqrt[5],0}},{"L",{0,1,1}},{"M",{1/2 (-1+Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"N",{1,1/2 (3+Sqrt[5]),1}},{"O",{-1+Sqrt[5],-1,1}},{"P",{1/2 (3+Sqrt[5]),1/2 (3+Sqrt[5]),1}}}}}
{{16,14},"DEGICFGJAHIJBDFKABGLCDHLBEHMACKMBCINEJKNFLMOADNOAEFPGHOP",{{{"A",{1/2 (-1-Sqrt[5]),0,1}},{"B",{1/2 (-1-Sqrt[5]),1,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3+Sqrt[5]),0}},{"F",{0,1/2 (1-Sqrt[5]),1}},{"G",{0,1,0}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{0,0,1}},{"K",{-1,1/2 (3-Sqrt[5]),1}},{"L",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"M",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"N",{1/2 (-3-Sqrt[5]),1,1}},{"O",{1,1/2 (-3-Sqrt[5]),1}},{"P",{1,-1,1}}},{{"A",{1/2 (-1+Sqrt[5]),0,1}},{"B",{1/2 (-1+Sqrt[5]),1,1}},{"C",{0,1,1}},{"D",{1,-1,0}},{"E",{1,1/2 (-3-Sqrt[5]),0}},{"F",{0,1/2 (1+Sqrt[5]),1}},{"G",{0,1,0}},{"H",{1,0,1}},{"I",{1,0,0}},{"J",{0,0,1}},{"K",{-1,1/2 (3+Sqrt[5]),1}},{"L",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"M",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"N",{1/2 (-3+Sqrt[5]),1,1}},{"O",{1,1/2 (-3+Sqrt[5]),1}},{"P",{1,-1,1}}}}}
{{16,14},"DFGICEHJBEIKAFJKBCGLADHLACIMBDJMAEGNBFHNCDKOEFLOGHMPIJNP",{{{"A",{0,1,1}},{"B",{1,1/2 (-3+Sqrt[5]),0}},{"C",{1/2 (-1-Sqrt[5]),1,1}},{"D",{1/2 (-1-Sqrt[5]),0,1}},{"E",{1,-1,0}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{-1,1/2 (3-Sqrt[5]),1}},{"I",{1,0,0}},{"J",{0,1/2 (1-Sqrt[5]),1}},{"K",{0,1,0}},{"L",{1/2 (1-Sqrt[5]),1/2 (-1+Sqrt[5]),1}},{"M",{-2-Sqrt[5],1,1}},{"N",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"O",{1/2 (-1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"P",{2+Sqrt[5],1/2 (1-Sqrt[5]),1}}},{{"A",{0,1,1}},{"B",{1,1/2 (-3-Sqrt[5]),0}},{"C",{1/2 (-1+Sqrt[5]),1,1}},{"D",{1/2 (-1+Sqrt[5]),0,1}},{"E",{1,-1,0}},{"F",{0,0,1}},{"G",{1,0,1}},{"H",{-1,1/2 (3+Sqrt[5]),1}},{"I",{1,0,0}},{"J",{0,1/2 (1+Sqrt[5]),1}},{"K",{0,1,0}},{"L",{1/2 (1+Sqrt[5]),1/2 (-1-Sqrt[5]),1}},{"M",{-2+Sqrt[5],1,1}},{"N",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"O",{1/2 (-1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"P",{2-Sqrt[5],1/2 (1+Sqrt[5]),1}}}}}
{{16,15},"DFGICEHJBEIKAFJKBCGLADHLACIMBDJMCDKNEFLNAEGOBFHOGHMPABNPIJOP",{{{"A",{1/2 (1-Sqrt[5]),0,1}},{"B",{0,1/2 (3+Sqrt[5]),1}},{"C",{1/2 (1-Sqrt[5]),1/2 (1+Sqrt[5]),1}},{"D",{1,1/2 (-3-Sqrt[5]),0}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,1/2 (1+Sqrt[5]),0}},{"H",{1/2 (-1-Sqrt[5]),1/2 (3+Sqrt[5]),1}},{"I",{0,1,0}},{"J",{1,0,1}},{"K",{0,0,1}},{"L",{-1,1,1}},{"M",{1/2 (1-Sqrt[5]),2+Sqrt[5],1}},{"N",{1/2 (-3+Sqrt[5]),1,1}},{"O",{1,1/2 (3+Sqrt[5]),1}},{"P",{1,1/2 (7+3 Sqrt[5]),1}}},{{"A",{1/2 (1+Sqrt[5]),0,1}},{"B",{0,1/2 (3-Sqrt[5]),1}},{"C",{1/2 (1+Sqrt[5]),1/2 (1-Sqrt[5]),1}},{"D",{1,1/2 (-3+Sqrt[5]),0}},{"E",{0,1,1}},{"F",{1,0,0}},{"G",{1,1/2 (1-Sqrt[5]),0}},{"H",{1/2 (-1+Sqrt[5]),1/2 (3-Sqrt[5]),1}},{"I",{0,1,0}},{"J",{1,0,1}},{"K",{0,0,1}},{"L",{-1,1,1}},{"M",{1/2 (1+Sqrt[5]),2-Sqrt[5],1}},{"N",{1/2 (-3-Sqrt[5]),1,1}},{"O",{1,1/2 (3-Sqrt[5]),1}},{"P",{1,1/2 (7-3 Sqrt[5]),1}}}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-22 08:25 , Processed in 0.044959 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表