找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2025-6-26 10:17:48 | 显示全部楼层
n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,66, ......

\(\D\bigg\lfloor\sum_{k = 1}^{\infty}\frac{1}{(k^2+k)^{\frac{n+1}{2n}}}\bigg\rfloor=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, \cdots\cdots\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-6-26 10:45:19 | 显示全部楼层
n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,66, ......

\(\D\bigg\lfloor\sum_{k = 1}^{\infty}\frac{1}{k^{\frac{n+1}{n}}}\bigg\rfloor=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,56,57, \cdots\cdots\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-6-26 17:04:21 | 显示全部楼层
n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,66, ......

\(\D\bigg\lfloor\sum_{k = 1}^{\infty}\frac{k^{\frac{n}{n+1}}}{k(k+1)}\bigg\rfloor=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,56,\cdots\cdots\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-6-26 17:05:42 | 显示全部楼层
A=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, ......   n=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 , ......

\(\D\bigg\lfloor\sum_{k=1}^{\infty}\frac{1}{(k^{A+1}+k^{A})^{\frac{n+1}{(A+1)n}}}\bigg\rfloor=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, \cdots\cdots\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 7 天前 | 显示全部楼层
楼上的没问题!大胆往前走!!

\(\displaystyle\bigg\lfloor\sum_{k=1}^{\infty}\frac{1}{(k^{A+1}+k^{A})^{\frac{n+1}{n(A+1)}}}\bigg\rfloor=1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,\cdots\cdots\)

{1.000, 2.011, 3.014, 4.016, 5.016, 6.017, 7.017, 8.017, 9.018, 10.02, 11.02, 12.02, 13.02, 14.02, 15.02, 16.02, 17.02, 18.02, 19.02, 20.02, 21.02, 22.02, 23.02, 24.02, 25.02, 26.02, 27.02, 28.02, 29.02, 30.02, 31.02, 32.02},
{1.173, 2.184, 3.187, 4.188, 5.189, 6.189, 7.189, 8.189, 9.190, 10.19, 11.19, 12.19, 13.19, 14.19, 15.19, 16.19, 17.19, 18.19, 19.19, 20.19, 21.19, 22.19, 23.19, 24.19, 25.19, 26.19, 27.19, 28.19, 29.19, 30.19, 31.19, 32.19},
{1.274, 2.280, 3.281, 4.281, 5.282, 6.282, 7.282, 8.282, 9.282, 10.28, 11.28, 12.28, 13.28, 14.28, 15.28, 16.28, 17.28, 18.28, 19.28, 20.28, 21.28, 22.28, 23.28, 24.28, 25.28, 26.28, 27.28, 28.28, 29.28, 30.28, 31.28, 32.28},
{1.339, 2.341, 3.341, 4.340, 5.340, 6.339, 7.339, 8.339, 9.339, 10.34, 11.34, 12.34, 13.34, 14.34, 15.34, 16.34, 17.34, 18.34, 19.34, 20.34, 21.34, 22.34, 23.34, 24.34, 25.34, 26.34, 27.34, 28.34, 29.34, 30.34, 31.34, 32.34},
{1.385, 2.383, 3.381, 4.380, 5.380, 6.379, 7.379, 8.378, 9.378, 10.38, 11.38, 12.38, 13.38, 14.38, 15.38, 16.38, 17.38, 18.38, 19.38, 20.38, 21.38, 22.38, 23.38, 24.38, 25.38, 26.38, 27.38, 28.38, 29.38, 30.38, 31.38, 32.38},
{1.419, 2.414, 3.411, 4.409, 5.408, 6.408, 7.407, 8.407, 9.406, 10.41, 11.41, 12.41, 13.41, 14.41, 15.41, 16.41, 17.41, 18.41, 19.41, 20.40, 21.40, 22.40, 23.40, 24.40, 25.40, 26.40, 27.40, 28.40, 29.40, 30.40, 31.40, 32.40},
{1.445, 2.437, 3.434, 4.432, 5.430, 6.430, 7.429, 8.428, 9.428, 10.43, 11.43, 12.43, 13.43, 14.43, 15.43, 16.43, 17.43, 18.43, 19.43, 20.43, 21.43, 22.43, 23.43, 24.43, 25.43, 26.43, 27.43, 28.43, 29.43, 30.43, 31.43, 32.43},
{1.466, 2.456, 3.452, 4.449, 5.448, 6.447, 7.446, 8.445, 9.445, 10.44, 11.44, 12.44, 13.44, 14.44, 15.44, 16.44, 17.44, 18.44, 19.44, 20.44, 21.44, 22.44, 23.44, 24.44, 25.44, 26.44, 27.44, 28.44, 29.44, 30.44, 31.44, 32.44},
{1.483, 2.471, 3.466, 4.463, 5.462, 6.461, 7.460, 8.459, 9.459, 10.46, 11.46, 12.46, 13.46, 14.46, 15.46, 16.46, 17.46, 18.46, 19.46, 20.46, 21.46, 22.46, 23.46, 24.46, 25.46, 26.46, 27.46, 28.46, 29.46, 30.46, 31.46, 32.46},
{1.497, 2.483, 3.478, 4.475, 5.473, 6.472, 7.471, 8.470, 9.470, 10.47, 11.47, 12.47, 13.47, 14.47, 15.47, 16.47, 17.47, 18.47, 19.47, 20.47, 21.47, 22.47, 23.47, 24.47, 25.47, 26.47, 27.47, 28.47, 29.47, 30.47, 31.47, 32.47},
{1.508, 2.494, 3.488, 4.485, 5.483, 6.481, 7.480, 8.480, 9.479, 10.48, 11.48, 12.48, 13.48, 14.48, 15.48, 16.48, 17.48, 18.48, 19.48, 20.48, 21.48, 22.48, 23.48, 24.48, 25.48, 26.48, 27.48, 28.48, 29.48, 30.48, 31.48, 32.48},
{1.518, 2.502, 3.496, 4.493, 5.491, 6.490, 7.489, 8.488, 9.487, 10.49, 11.49, 12.49, 13.49, 14.49, 15.49, 16.49, 17.48, 18.48, 19.48, 20.48, 21.48, 22.48, 23.48, 24.48, 25.48, 26.48, 27.48, 28.48, 29.48, 30.48, 31.48, 32.48},
{1.527, 2.510, 3.504, 4.500, 5.498, 6.496, 7.495, 8.495, 9.494, 10.49, 11.49, 12.49, 13.49, 14.49, 15.49, 16.49, 17.49, 18.49, 19.49, 20.49, 21.49, 22.49, 23.49, 24.49, 25.49, 26.49, 27.49, 28.49, 29.49, 30.49, 31.49, 32.49},
{1.534, 2.517, 3.510, 4.506, 5.504, 6.503, 7.501, 8.501, 9.500, 10.50, 11.50, 12.50, 13.50, 14.50, 15.50, 16.50, 17.50, 18.50, 19.50, 20.50, 21.50, 22.50, 23.50, 24.50, 25.50, 26.50, 27.50, 28.50, 29.50, 30.50, 31.50, 32.50},
{1.541, 2.522, 3.515, 4.512, 5.509, 6.508, 7.507, 8.506, 9.505, 10.50, 11.50, 12.50, 13.50, 14.50, 15.50, 16.50, 17.50, 18.50, 19.50, 20.50, 21.50, 22.50, 23.50, 24.50, 25.50, 26.50, 27.50, 28.50, 29.50, 30.50, 31.50, 32.50},
{1.547, 2.528, 3.520, 4.517, 5.514, 6.513, 7.511, 8.511, 9.510, 10.51, 11.51, 12.51, 13.51, 14.51, 15.51, 16.51, 17.51, 18.51, 19.51, 20.51, 21.51, 22.51, 23.51, 24.51, 25.51, 26.51, 27.51, 28.51, 29.51, 30.51, 31.51, 32.51},
{1.552, 2.532, 3.525, 4.521, 5.518, 6.517, 7.516, 8.515, 9.514, 10.51, 11.51, 12.51, 13.51, 14.51, 15.51, 16.51, 17.51, 18.51, 19.51, 20.51, 21.51, 22.51, 23.51, 24.51, 25.51, 26.51, 27.51, 28.51, 29.51, 30.51, 31.51, 32.51},
{1.557, 2.536, 3.529, 4.525, 5.522, 6.520, 7.519, 8.518, 9.518, 10.52, 11.52, 12.52, 13.52, 14.52, 15.52, 16.52, 17.51, 18.51, 19.51, 20.51, 21.51, 22.51, 23.51, 24.51, 25.51, 26.51, 27.51, 28.51, 29.51, 30.51, 31.51, 32.51},
{1.561, 2.540, 3.532, 4.528, 5.526, 6.524, 7.523, 8.522, 9.521, 10.52, 11.52, 12.52, 13.52, 14.52, 15.52, 16.52, 17.52, 18.52, 19.52, 20.52, 21.52, 22.52, 23.52, 24.52, 25.52, 26.52, 27.52, 28.52, 29.52, 30.52, 31.52, 32.52},
{1.565, 2.543, 3.535, 4.531, 5.529, 6.527, 7.526, 8.525, 9.524, 10.52, 11.52, 12.52, 13.52, 14.52, 15.52, 16.52, 17.52, 18.52, 19.52, 20.52, 21.52, 22.52, 23.52, 24.52, 25.52, 26.52, 27.52, 28.52, 29.52, 30.52, 31.52, 32.52},
{1.569, 2.547, 3.538, 4.534, 5.531, 6.530, 7.528, 8.528, 9.527, 10.53, 11.53, 12.53, 13.52, 14.52, 15.52, 16.52, 17.52, 18.52, 19.52, 20.52, 21.52, 22.52, 23.52, 24.52, 25.52, 26.52, 27.52, 28.52, 29.52, 30.52, 31.52, 32.52},
{1.572, 2.549, 3.541, 4.537, 5.534, 6.532, 7.531, 8.530, 9.529, 10.53, 11.53, 12.53, 13.53, 14.53, 15.53, 16.53, 17.53, 18.53, 19.53, 20.53, 21.53, 22.53, 23.53, 24.53, 25.53, 26.53, 27.53, 28.53, 29.53, 30.52, 31.52, 32.52},
{1.575, 2.552, 3.543, 4.539, 5.536, 6.535, 7.533, 8.532, 9.532, 10.53, 11.53, 12.53, 13.53, 14.53, 15.53, 16.53, 17.53, 18.53, 19.53, 20.53, 21.53, 22.53, 23.53, 24.53, 25.53, 26.53, 27.53, 28.53, 29.53, 30.53, 31.53, 32.53},
{1.578, 2.554, 3.546, 4.541, 5.539, 6.537, 7.535, 8.534, 9.534, 10.53, 11.53, 12.53, 13.53, 14.53, 15.53, 16.53, 17.53, 18.53, 19.53, 20.53, 21.53, 22.53, 23.53, 24.53, 25.53, 26.53, 27.53, 28.53, 29.53, 30.53, 31.53, 32.53},
{1.580, 2.556, 3.548, 4.543, 5.541, 6.539, 7.537, 8.536, 9.536, 10.54, 11.53, 12.53, 13.53, 14.53, 15.53, 16.53, 17.53, 18.53, 19.53, 20.53, 21.53, 22.53, 23.53, 24.53, 25.53, 26.53, 27.53, 28.53, 29.53, 30.53, 31.53, 32.53},
{1.582, 2.559, 3.550, 4.545, 5.542, 6.541, 7.539, 8.538, 9.537, 10.54, 11.54, 12.54, 13.54, 14.54, 15.53, 16.53, 17.53, 18.53, 19.53, 20.53, 21.53, 22.53, 23.53, 24.53, 25.53, 26.53, 27.53, 28.53, 29.53, 30.53, 31.53, 32.53},
{1.585, 2.560, 3.552, 4.547, 5.544, 6.542, 7.541, 8.540, 9.539, 10.54, 11.54, 12.54, 13.54, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.53, 27.53, 28.53, 29.53, 30.53, 31.53, 32.53},
{1.587, 2.562, 3.553, 4.549, 5.546, 6.544, 7.543, 8.542, 9.541, 10.54, 11.54, 12.54, 13.54, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.589, 2.564, 3.555, 4.550, 5.547, 6.545, 7.544, 8.543, 9.542, 10.54, 11.54, 12.54, 13.54, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.590, 2.565, 3.556, 4.552, 5.549, 6.547, 7.545, 8.544, 9.544, 10.54, 11.54, 12.54, 13.54, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.592, 2.567, 3.558, 4.553, 5.550, 6.548, 7.547, 8.546, 9.545, 10.54, 11.54, 12.54, 13.54, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.594, 2.568, 3.559, 4.554, 5.551, 6.549, 7.548, 8.547, 9.546, 10.55, 11.54, 12.54, 13.54, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.595, 2.569, 3.560, 4.555, 5.553, 6.551, 7.549, 8.548, 9.547, 10.55, 11.55, 12.55, 13.55, 14.54, 15.54, 16.54, 17.54, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.596, 2.571, 3.561, 4.557, 5.554, 6.552, 7.550, 8.549, 9.548, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.54, 19.54, 20.54, 21.54, 22.54, 23.54, 24.54, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.598, 2.572, 3.562, 4.558, 5.555, 6.553, 7.551, 8.550, 9.549, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.55, 19.55, 20.55, 21.55, 22.55, 23.55, 24.55, 25.54, 26.54, 27.54, 28.54, 29.54, 30.54, 31.54, 32.54},
{1.599, 2.573, 3.563, 4.559, 5.556, 6.554, 7.552, 8.551, 9.550, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.55, 19.55, 20.55, 21.55, 22.55, 23.55, 24.55, 25.55, 26.55, 27.55, 28.55, 29.55, 30.55, 31.55, 32.55},
{1.600, 2.574, 3.564, 4.560, 5.557, 6.555, 7.553, 8.552, 9.551, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.55, 19.55, 20.55, 21.55, 22.55, 23.55, 24.55, 25.55, 26.55, 27.55, 28.55, 29.55, 30.55, 31.55, 32.55},
{1.601, 2.575, 3.565, 4.560, 5.557, 6.555, 7.554, 8.553, 9.552, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.55, 19.55, 20.55, 21.55, 22.55, 23.55, 24.55, 25.55, 26.55, 27.55, 28.55, 29.55, 30.55, 31.55, 32.55},
{1.602, 2.576, 3.566, 4.561, 5.558, 6.556, 7.555, 8.554, 9.553, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.55, 19.55, 20.55, 21.55, 22.55, 23.55, 24.55, 25.55, 26.55, 27.55, 28.55, 29.55, 30.55, 31.55, 32.55},
{1.603, 2.577, 3.567, 4.562, 5.559, 6.557, 7.556, 8.555, 9.554, 10.55, 11.55, 12.55, 13.55, 14.55, 15.55, 16.55, 17.55, 18.55, 19.55, 20.55, 21.55, 22.55, 23.55, 24.55, 25.55, 26.55, 27.55, 28.55, 29.55, 30.55, 31.55, 32.55}}
  1. Table[N[Sum[{1/((k^(A + 1) + k^A)^((n + 1)/(n (A + 1))))}, {k, Infinity}], 4], {A, 40}, {n, 32}]
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 前天 09:01 | 显示全部楼层
A344183——蛮好玩的一串数。
1 1
2 12
3 123
4 1234
5 12345
6 123456
7 1234567
8 12345678
9 123456789
10 1023456789
11 11023456789
12 110123456789
13 1101213456789
14 11012131456789
15 110121314156789
16 1101213141516789
17 11012131415161789
18 110121314151617189
19 1101213141516171819
20 11012013141516171819
21 110120131415161718219
22 1101201314151617182219
23 110120131415161718221923
24 11012013141516171822192324
25 1101201314151617182219232425
26 110120131415161718221923242526
27 11012013141516171822192324252627
28 1101201314151617182219232425262728
29 110120131415161718221923242526272829
30 1101201301415161718221923242526272829
31 11012013014151617182219231242526272829
32 11032013014151617182219231242526272829
33 110320130141516171822192331242526272829
34 11032013014151617182219233124252627282934
35 1103201301415161718221923312425262728293435
36 110320130141516171822192331242526272829343536
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 前天 18:56 | 显示全部楼层
aimisiyou 发表于 2025-6-21 09:25
从1~100中至少选出多少个不同的数,必然存在四个不同的数,满足a+b=c+d?

接715#,716#——记录一下手工解题的过程。

题目。{1, 2, ..., n}没有等和对的最大子集a(k),  n>3。

a(3)=3, {1,2,3}——每次只要关注末尾2个数之间数是否有解就可以了。譬如:
a(4)=5, {1,2,3,5}——3,5之间有4——1,2,3,4有解。
a(5)=8, {1,2,3,5,8}——5,8之间有6,7——1,2,3,5,6-1,2,3,5,7有解。
a(6)=13, {1,2,3,5,8,13}——8,13之间有9,10,11,12——1,2,3,5,8,9-1,2,3,5,8,12有解。
a(7)=21, {1,2,3,5,8,13,21}——13,21之间有14-20——1,2,3,5,8,13,14-1,2,3,5,8,13,20有解。
a(8)=30, {1,2,3,5,8,13,21,30}——21,30之间有22-29——1,2,3,5,8,13,21,22-1,2,3,5,8,13,21,29有解。
a(9)=39, {1,2,3,5,8,13,21,30,39}——30,39之间有31-38——1,2,3,5,8,13,21,30,31-1,2,3,5,8,13,21,38有解。
a(10)=53, {1,2,3,5,8,13,21,30,39,53}
a(11)=74, {1,2,3,5,8,13,21,30,39,53,74},
a(12)=95, {1,2,3,5,8,13,21,30,39,53,74,95},

得到——A011185——1, 2, 3, 5, 8, 13, 21, 30, 39, 53, 74, 95, 128, 152, 182, 212, 258, 316, 374, 413, 476, 531, 546, 608, 717, 798, 862, 965, 1060, 1161, 1307, 1386, 1435, 1556, 1722, 1834, 1934, 2058, ......

这个通项公式也可以。
  1. t = {1}; k = 1; sms = {}; Do[k++; While[Intersection[sms, t + k] != {}, k++]; sms = Join[sms, t + k, {k}]; AppendTo[t, k], {50}]; t
复制代码

又:{1, 2, ..., n}没有等和对的最大子集a(k)可以有很多数字串——只要把这个"A"换一下就行。
  1. t = {1}; k = 1; sms = {}; Do[k++; While[Intersection[sms, t + k] != {}, k++]; sms = Join[sms, t + k, {A*k}]; AppendTo[t, k], {50}]; t
复制代码
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-7-4 08:09 , Processed in 0.026552 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表