A344308 Numbers k such that A205791(k) = k+1.
{1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 23, 26, 29, 30, 34, 35, 37, 38, 39, 42, 43, 46, 47, 51, 53, 57, 58, 59, 65, 67, 69, 70, 73, 74, 78, 79, 83, 85, 86, 87, 89, 91, 94, 95, 97, 102, 103, 105, 106, 107, 109, 111, 113, 114, 115, 118, 119, 127, 129,
130, 133, 134, 137, 138, 139, 141, 145, 146, 149, 157, 158, 159, 161, 163, 166, 167, 170, 173, 174, 177, 178, 179, 182, 185, 190, 193, 194, 195, 197, 199, 201, 203, 206, 210, 214, 215, 218, 219, 221, 222, 223, 226, 227, 229, 230, 233, 235, 237,
238, 239, 247, 249, 254, 255, 257, 258, 259, 263, 265, 266, 267, 269, 273, 274, 277, 278, 282, 283, 285, 290, 291, 293, 295, 298, 299, 301, 307, 309, 313, 314, 317, 318, 321, 322, 323, 326, 327, 329, 334, 335, 337, 339, 345, 346, 347, 349, ...}
Select[Range@200, (k=1; While[FreeQ[Mod[Table[k^5-j^5, {j, k-1}], #], 0], k++]; k)==#+1&]—— (* Giorgos Kalogeropoulos, May 14 2021 *)
Array[(k=1; While[FreeQ[Mod[Table[k^5-j^5, {j, k-1}], #], 0], k++]; k)&, 100]—— (* Giorgos Kalogeropoulos, May 14 2021 *)
相同的数字串——Q[n_] := Sort[PowerMod[#, 5, n] & /@ Range@n] == Range@n - 1; Select[Range@360, Q]——这个算法快一些。
{1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 23, 26, 29, 30, 34, 35, 37, 38, 39, 42, 43, 46, 47, 51, 53, 57, 58, 59, 65, 67, 69, 70, 73, 74, 78, 79, 83, 85, 86, 87, 89, 91, 94, 95, 97, 102, 103, 105, 106, 107, 109, 111, 113, 114, 115, 118, 119, 127, 129,
130, 133, 134, 137, 138, 139, 141, 145, 146, 149, 157, 158, 159, 161, 163, 166, 167, 170, 173, 174, 177, 178, 179, 182, 185, 190, 193, 194, 195, 197, 199, 201, 203, 206, 210, 214, 215, 218, 219, 221, 222, 223, 226, 227, 229, 230, 233, 235, 237,
238, 239, 247, 249, 254, 255, 257, 258, 259, 263, 265, 266, 267, 269, 273, 274, 277, 278, 282, 283, 285, 290, 291, 293, 295, 298, 299, 301, 307, 309, 313, 314, 317, 318, 321, 322, 323, 326, 327, 329, 334, 335, 337, 339, 345, 346, 347, 349, ...}
不同的数字串——Q[n_] := Sort[PowerMod[#, 7, n] & /@ Range@n] == Range@n - 1; Select[Range@360, Q]——这个算法快多了——OEIS没有这串数。
{1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 46, 47, 51, 53, 55, 57, 59, 61, 62, 65, 66, 67, 69, 70, 73, 74, 77, 78, 79, 82, 83, 85, 89, 91, 93, 94, 95, 97, 101, 102, 103,
105, 106, 107, 109, 110, 111, 114, 115, 118, 119, 122, 123, 130, 131, 133, 134, 137, 138, 139, 141, 143, 146, 149, 151, 154, 155, 157, 158, 159, 161, 163, 165, 166, 167, 170, 173, 177, 178, 179, 181, 182, 183, 185, 186,
187, 190, 191, 193, 194, 195, 199, 201, 202, 205, 206, 209, 210, 214, 217, 218, 219, 221, 222, 223, 227, 229, 230, 231, 233, 235, 237, 238, 241, 246, 247, 249, 251, 253, 255, 257, 259, 262, 263, 265, 266, 267, 269, 271, 273,
274, 277, 278, 282, 283, 285, 286, 287, 291, 293, 295, 298, 299, 302, 303, 305, 307, 309, 310, 311, 313, 314, 317, 318, 321, 322, 323, 326, 327, 329, 330, 331, 334, 335, 341, 345, 346, 347, 349, 353, 354, 357, 358, 359, ...}
不同的数字串——A[n_] := Sort[PowerMod[#, 9, n] & /@ Range@n] == Range@n - 1; Select[Range@360, A]——B[n_] := Sort[PowerMod[#, 3, n] & /@ Range@n] == Range@n - 1; Select[Range@360, B]——答案是同一串数。
{1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 23, 29, 30, 33, 34, 41, 46, 47, 51, 53, 55, 58, 59, 66, 69, 71, 82, 83, 85, 87, 89, 94, 101, 102, 106, 107, 110, 113, 115, 118, 123, 131, 137, 138, 141, 142, 145, 149, 159, 165, 166, 167, 170, 173, 174, 177, 178, 179,
187, 191, 197, 202, 205, 213, 214, 226, 227, 230, 233, 235, 239, 246, 249, 251, 253, 255, 257, 262, 263, 265, 267, 269, 274, 281, 282, 290, 293, 295, 298, 303, 311, 317, 318, 319, 321, 330, 334, 339, 345, 346, 347, 353, 354, 355, 358, 359, ...}
Q[n_] := Sort[PowerMod[#, 2, n] & /@ Range@n] == Range@n - 1; Select[Range@360, Q]
{1, 2}——这个更伟大了——只有{1, 2}两个数。—— "2" 改 "任意偶数" , 还是{1, 2}两个数。
|