找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2025-5-3 07:39:58 | 显示全部楼层
1个编号是1的球,1个球的编号之和=1的整数倍的有1个。
2个编号是1的球,2个编号是2的球,从中取2个球,2个球的编号之和=2的整数倍的有2个。
3个编号是1的球,3个编号是2的球,3个编号是3的球,从中取3个球,3个球的编号之和=3的整数倍的有4个。
4个编号是1的球,4个编号是2的球,4个编号是3的球,4个编号是4的球,从中取4个球,4个球的编号之和=4的整数倍的有10个。
5个编号是1的球,5个编号是2的球,5个编号是3的球,5个编号是4的球,5个编号是5的球,从中取5个球,5个球的编号之和=5的整数倍的有26个。
6个编号是1的球,6个编号是2的球,6个编号是3的球,6个编号是4的球,6个编号是5的球,,6个编号是6的球,从中取6个球,6个球的编号之和=6的整数倍的有多少个?
7个编号是1的球,7个编号是2的球,7个编号是3的球,7个编号是4的球,7个编号是5的球,,7个编号是6的球,7个编号是7的球,从中取7个球,7个球的编号之和=7的整数倍的有多少个?
8个编号是1的球,8个编号是2的球,8个编号是3的球,8个编号是4的球,8个编号是5的球,,8个编号是6的球,8个编号是7的球,8个编号是8的球,从中取8个球,8个球的编号之和=8的整数倍的有多少个?
9个编号是1的球,9个编号是2的球,9个编号是3的球,9个编号是4的球,9个编号是5的球,,9个编号是6的球,9个编号是7的球,9个编号是8的球,9个编号是9的球,从中取9个球,9个球的编号之和=9的整数倍的有多少个?
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-5-5 10:06:36 | 显示全部楼层
王守恩 发表于 2025-5-3 07:39
1个编号是1的球,1个球的编号之和=1的整数倍的有1个。
2个编号是1的球,2个编号是2的球,从中取2个球,2个球的 ...

f[6]=80

{80,{{1,1,1,1,1,1},{1,1,1,1,2,6},{1,1,1,1,3,5},{1,1,1,1,4,4},{1,1,1,2,2,5},{1,1,1,2,3,4},{1,1,1,3,3,3},{1,1,1,3,6,6},{1,1,1,4,5,6},{1,1,1,5,5,5},{1,1,2,2,2,4},{1,1,2,2,3,3},{1,1,2,2,6,6},{1,1,2,3,5,6},{1,1,2,4,4,6},{1,1,2,4,5,5},{1,1,3,3,4,6},{1,1,3,3,5,5},{1,1,3,4,4,5},{1,1,4,4,4,4},{1,1,4,6,6,6},{1,1,5,5,6,6},{1,2,2,2,2,3},{1,2,2,2,5,6},{1,2,2,3,4,6},{1,2,2,3,5,5},{1,2,2,4,4,5},{1,2,3,3,3,6},{1,2,3,3,4,5},{1,2,3,4,4,4},{1,2,3,6,6,6},{1,2,4,5,6,6},{1,2,5,5,5,6},{1,3,3,3,3,5},{1,3,3,3,4,4},{1,3,3,5,6,6},{1,3,4,4,6,6},{1,3,4,5,5,6},{1,3,5,5,5,5},{1,4,4,4,5,6},{1,4,4,5,5,5},{1,5,6,6,6,6},{2,2,2,2,2,2},{2,2,2,2,4,6},{2,2,2,2,5,5},{2,2,2,3,3,6},{2,2,2,3,4,5},{2,2,2,4,4,4},{2,2,2,6,6,6},{2,2,3,3,3,5},{2,2,3,3,4,4},{2,2,3,5,6,6},{2,2,4,4,6,6},{2,2,4,5,5,6},{2,2,5,5,5,5},{2,3,3,3,3,4},{2,3,3,4,6,6},{2,3,3,5,5,6},{2,3,4,4,5,6},{2,3,4,5,5,5},{2,4,4,4,4,6},{2,4,4,4,5,5},{2,4,6,6,6,6},{2,5,5,6,6,6},{3,3,3,3,3,3},{3,3,3,3,6,6},{3,3,3,4,5,6},{3,3,3,5,5,5},{3,3,4,4,4,6},{3,3,4,4,5,5},{3,3,6,6,6,6},{3,4,4,4,4,5},{3,4,5,6,6,6},{3,5,5,5,6,6},{4,4,4,4,4,4},{4,4,4,6,6,6},{4,4,5,5,6,6},{4,5,5,5,5,6},{5,5,5,5,5,5},{6,6,6,6,6,6}}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-5-5 10:30:35 | 显示全部楼层
  1. f[n_] := Sum[EulerPhi[n/k]*Binomial[2 k, k]/(2 n), {k, Divisors@n}]; Table[f[n], {n, 50}]
复制代码


{1,2,4,10,26,80,246,810,2704,9252,32066,112720,400024,1432860,5170604,18784170,68635478,252088496,930138522,3446167860,12815663844,47820447028,178987624514,671825133648,2528212128776,9536895064400,36054433810102,136583761444364,518401146543812,1971076362005880,7506908923471954,28634752211620266,109385279303298134,418427080552561516,1602661111666612296,6146007503971075312,23596358977508462296,90692376956955350244,348936088066654523296,1343840109168425292660,5180299766448679532060,19987029597767017004376,77180849825857621779894,298278470246442673742468,1153638014306149018667804,4465167928718123725683748,17294692982395428197325698,67031948061107616221175888,259975635295723029619698462,1008913445455643197454196752}

A003239
Number of rooted planar trees with n non-root nodes: circularly cycling the subtrees at the root gives equivalent trees.
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-5-11 14:57:04 | 显示全部楼层
不错的一串数——A005920——有这串数——可惜没有这样的条文。

$(\frac{a_{1}+n}{a_{1}})(\frac{a_{2}+n}{a_{2}})(\frac{a_{3}+n}{a_{3}})(\frac{a_{4}+n}{a_{4}})\cdots(\frac{a_{n}+n}{a_{n}})=\frac{2n-1}{n}$

$a_{1},a_{2},a_{3},a_{4},\cdots,a_{n}=正整数.求:a_{1}+a_{2}+a_{3}+a_{4}+\cdots+a_{n}最小值$

$a_{1}+a_{2}+a_{3}+a_{4}+\cdots\cdots+a_{n}最小值=\frac{3 n^3 - 2 n^2 + n}{2}$
譬如。
a(1)=1,\(1=1,(\frac{1+0}{1})=\frac{1+0}{1}\)
a(2)=9,\(9=4+5,(\frac{4+1}{4})(\frac{5+1}{5})=\frac{2+1}{2}\)
a(3)=33,\(33=9+11+13,(\frac{9+2}{9})(\frac{11+2}{11})(\frac{13+2}{13})=\frac{3+2}{3}\)
a(4)=82,\(82=16+19+22+25,(\frac{16+3}{16})(\frac{19+3}{19})(\frac{22+3}{22})(\frac{25+3}{25})=\frac{4+3}{4}\)
a(5)=165,\(165=25+29+33+37+41,(\frac{25+4}{25})(\frac{29+4}{29})(\frac{33+4}{33})(\frac{37+4}{37})(\frac{41+4}{41})=\frac{5+4}{5}\)
a(6)=291,\(291=36+41+46+51+56+61,(\frac{36+5}{36})(\frac{41+5}{41})(\frac{46+5}{46})(\frac{51+5}{51})(\frac{56+5}{56})(\frac{61+5}{61})=\frac{6+5}{6}\)
a(7)=469,\(469=49+55+61+67+73+79+85,(\frac{49+6}{49})(\frac{55+6}{55})(\frac{61+6}{61})(\frac{67+6}{67})(\frac{73+6}{73})(\frac{79+6}{79})(\frac{85+6}{85})=\frac{7+6}{7}\)
a(8)=708,\(708=64+71+78+85+92+99+106+113,(\frac{64+7}{64})(\frac{71+7}{71})(\frac{78+7}{78})(\frac{85+7}{85})(\frac{92+7}{92})(\frac{99+7}{99})(\frac{106+7}{106})(\frac{113+7}{113})=\frac{8+7}{8}\)
a(9)=1017,\(1017=81+89+97+105+113+121+129+137+145,(\frac{81+8}{81})(\frac{89+8}{89})(\frac{97+8}{97})(\frac{105+8}{105})(\frac{113+8}{113})(\frac{121+8}{121})(\frac{129+8}{129})(\frac{137+8}{137})(\frac{145+8}{145})=\frac{9+8}{9}\)

{1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757}

Table[(3 n^3 - 2 n^2 + n)/2, {n, 29}]

不错的一串数——还可以有更小的吗?






毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-5-13 10:32:40 | 显示全部楼层
northwolves 发表于 2025-5-5 10:30
{1,2,4,10,26,80,246,810,2704,9252,32066,112720,400024,1432860,5170604,18784170,68635478,252088496, ...

Table[FindInstance[{(a + 1)/a + (b + 1)/b - (c + 1)/c == (n + 1)/n, 0 < c < b < a}, {c, b, a}, Integers, 1], {n, 99}]

n可以是这串数吗——A208770——12, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 44, 45, 48, 52, 54, 55, 56, 60, 63, 65, 66, 70, 72, 75, 77, 78, 80, 84, 85, 88, 90, 91, 95, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 115, 117, 119, 120,

n是这串数——A208770——可有通项公式?谢谢!

n不是这串数——我们可有自己的通项公式?谢谢!!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-5-13 14:56:44 | 显示全部楼层
已知:(n + 1)*a[n + 1] = n*a[n] + 2 n + 1,  a[1] = 1, 求:通项公式。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2025-5-13 15:55:43 | 显示全部楼层
王守恩 发表于 2025-5-13 14:56
已知:(n + 1)*a[n + 1] = n*a[n] + 2 n + 1,  a[1] = 1, 求:通项公式。

b(n)=na(n),b(1)=1

b(n+1)=b(n)+2n+1

b(n)=n²

a(n)=n

点评

A000027——没有。  发表于 2025-5-13 16:11
看看684#——有反例吗?  发表于 2025-5-13 16:00

评分

参与人数 1威望 +12 金币 +12 贡献 +12 经验 +12 鲜花 +12 收起 理由
王守恩 + 12 + 12 + 12 + 12 + 12 简单才是硬道理!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-5-17 13:51:13 | 显示全部楼层
有这样一串数——每次取2个数(允许重复取)相加,  和可以跑遍所有偶数(2, 4, 6, 8, 10, 12, ..........)——还可以“稀”吗?

1, 3, 7, 9, 19, 21, 25, 27, 55, 57, 61, 63, 73, 75, 79, 81, 163, 165, 169, 171, 181, 183, 187, 189, 217, 219, 223, 225, 235, 237, 241, 243, 487, 489, 493, 495, 505, 507,
511, 513, 541, 543, 547, 549, 559, 561, 565, 567, 649, 651, 655, 657, 667, 669, 673, 675, 703, 705, 709, 711, 721, 723, 727, 729, 1459, 1461, 1465, 1467, 1477, ..........

A191106—有这串数———通项公式没我们的好——Table[2 FromDigits[IntegerDigits[n, 2], 3] + 1, {n, 0, 64}]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-5-20 10:07:57 | 显示全部楼层
northwolves 发表于 2025-5-13 15:55
b(n)=na(n),b(1)=1

b(n+1)=b(n)+2n+1

用 2,3,+,×,( )。譬如:
a(1)=0,
a(2)=1,{2},
a(3)=1,{3},
a(4)=2,{2*2},
a(5)=2,{2+3},
a(6)=2,{2*3},
a(7)=3,{2*2+3},
a(8)=3,{2*2*2},
a(9)=2,{3*3},
a(10)=3,{2(2+3)},
a(11)=3,{3*3+2},
a(12)=3,{3*3+3},
a(13)=4,{3*3+2*2}
a(14)=4,{3*3+2+3},
a(15)=3,{3(2+3},
a(16)=4,{2*2*2*2},
a(17)=4,{3(2+3)+2},
a(18)=3,{2*3*3},
a(19)=5,{2*2*2*2+3},
a(20)=4,{2*3*3+2},
a(21)=4,{2*3*3+3},
a(22)=4,{2(3*3+2)},
a(23)=5,{2*3*3+2+3}
a(24)=4,{2*3(2+2)},
a(25)=4,{(2+3)(2+3)},
a(26)=5,{2*3(2+2)+2},
a(27)=3,{3*3*3},
a(28)=5,{2(3*3+2+3)},
a(29)=4,{3*3*3+2},
a(30)=4,{3*3*3+3)},
a(31)=5,{3*3*3+2*2},
a(32)=5,{3*3*3+2+3},
a(33)=4,{3(3*3+2)}
a(34)=5,{2((3(2+3)+2)},
a(35)=5,{3(3*3+2)+2},
a(36)=4,{3(3*3+3)},
a(37)=6,{3(3*3+2)+2*2},
a(38)=5,{3(3*3+3)+2},


得到一串数:0, 1, 1, 2, 2, 2, 3, 3, 2, 3, 3, 3, 4, 4, 3, 4, 4, 3, 5, 4, 4, 4, 5, 4, 4, 5, 3, 5, 4, 4, 5, 5, 4, 5, 5, 4, 6, 5, ——OEIS没有这串数?——可有通项公式?谢谢!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2025-5-21 05:57:56 | 显示全部楼层
第1个问题。
2^1-1!=1,
1*2^2-2!=2,
2*2^3-3!=10,
10*2^4-4!=136,
136*2^5-5!=4232,
4232*2^6-6!=270128,
270128*2^7-7!=34571344,
34571344*2^8-8!=8850223744,
......
得到一串数——{1, 2, 10, 136, 4232, 270128, 34571344, 8850223744, 4531314194048, 4640065731076352, 9502854617204452096, 38923692512068956783616, 318862889058868887744361472,
5224249574340507856716440066048, 171188210051989761448883000409892864, 11218990533967201006313996293939948847104, 1470495527268148970299588122238941287859519488}——求通项公式——问题1。

第2个问题。
2^1-1=1,
1*2^2-3=1,
1*2^3-6=2,
2*2^4-10=22,
22*2^5-15=689,
689*2^6-21=44075,
44075*2^7-28=5641572,
5641572*2^8-36=1444242396,
1444242396*2^9-45=739452106707,
.......
得到一串数——{1, 1, 2, 22, 689, 44075, 5641572, 1444242396, 739452106707, 757198957267913, 1550743464484685758, 6351845230529272864690, 52034316128495803307540389,
852530235449275241390741733271, 27935710755201851109891825115824008, 1830794740052908514337870650790642188152, 239965928168214824791293381940431052885458791}——求通项公式——问题2。

第3个问题。
136/22=6.18182,
4232/689=6.14224,
270128/44075=6.12883,
34571344/5641572=6.12796,
......
5224249574340507856716440066048/852530235449275241390741733271=6.12793465511211873361212958209,
......
262345168553487441312403456944635391129575147770993115164671264739968851694392029493592064/
42811352163266089318903999189948042642370639369565874377218194446248920891354503995981524=6.12793465511211873361208276053,
......
这个6.12793465511211873361208276053, 最后=???——问题3。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-6-9 19:33 , Processed in 0.045556 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表