找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2022-6-4 06:09:19 | 显示全部楼层
王守恩 发表于 2022-5-29 08:26
2, 3, 5, 8, 12, 19, 30, 48, 76, 121, 192, 305, 484, 768, 1219, 1935, 3072, 4876, 7741, 12288,
  ...

{1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 6196, 6842, 9109, 9048, 12951, 14014,
17902, 19208, 24158, 21510, 31931, 33888, 41449, 43826, 52956, 52992, 66712, 70034, 82993, 86840, 102091, 97776, 124314, 129448}

\(\D a(n)=Mod[n,2]+n\bigg(\frac{n^3-6n^2+23n-18\ \ \ }{24}-\frac{(5n^2-42n+40)del[2,n]\ \ \ }{48}-\frac{3del[4,n]\ }{4}-\frac{(53n-310)del[6,n]\ \ }{12}+\frac{49del[12,n]\ }{2}+32del[18,n]+19del[24,n]-36del[30,n]-50del[42,n]-190del[60,n]-78del[84,n]-48del[90,n]-78del[120,n]-48del[210,n]\bigg)\)

我就好奇:这串数不一定都是在长大。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-7-23 15:50:58 | 显示全部楼层
王守恩 发表于 2022-6-4 06:09
{1, 2, 4, 8, 16, 30, 57, 88, 163, 230, 386, 456, 794, 966, 1471, 1712, 2517, 2484, 4048, 4520, 619 ...

自然数 P 次方前 n 项求和公式系数表。

Table[k! StirlingS2[n, k], {n, 11}, {k, n}]
{1}
{1, 2}
{1,  6,  6}
{1, 14, 36,  24}
{1, 30, 150, 240,  120}
{1,  62, 540, 1560,  1800,    720}
{1, 126,1806, 8400, 16800,  15120,   5040}
{1, 254, 5796, 40824,126000, 191520,  141120,    40320}
{1, 510, 18150,186480, 834120, 1905120,  2328480,  1451520,    362880}
{1,1022, 55980, 818520, 5103000, 16435440, 29635200, 30240000,  16329600,  3628800}
{1,2046,171006,3498000,29607600,129230640,322494480,479001600,419126400,199584000,39916800}

附:Table[StirlingS2[n, k], {n, 11}, {k, n}]
{1}
{1,  1}
{1,  3, 1}
{1,  7,  6,  1}
{1, 15, 25, 10,  1}
{1, 31, 90,  65,  15,      1}
{1, 63, 301, 350, 140,    21,          1}
{1, 127, 966, 1701, 1050, 266,       28,          1}
{1, 255, 3025, 7770, 6951, 2646,      462,       36,       1}
{1, 511, 9330, 34105, 42525, 22827,   5880,    750,     45, 1}
{1,1023,28501,145750,246730,179487,63987,11880,1155,55, 1}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-7-24 16:39:51 | 显示全部楼层
本帖最后由 王守恩 于 2022-7-24 19:31 编辑
王守恩 发表于 2022-7-23 15:50
自然数 P 次方前 n 项求和公式系数表。

Table[k! StirlingS2[n, k], {n, 11}, {k, n}]

从简单算起。

\(\D\frac{1}{1^2}>\frac{\pi^2}{6}-\frac{1}{1}\)

\(\D\frac{1}{1^2}+\frac{1}{2^2}>\frac{\pi^2}{6}-\frac{1}{2}>\frac{1}{1^2}\)

\(\D\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}>\frac{\pi^2}{6}-\frac{1}{3}>\frac{1}{1^2}+\frac{1}{2^2}\)

\(\D\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}>\frac{\pi^2}{6}-\frac{1}{4}>\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\)

\(\D\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}>\frac{\pi^2}{6}-\frac{1}{5}>\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}\)

\(\D\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}>\frac{\pi^2}{6}-\frac{1}{6}>\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}\)


我们可以有:\(n=1, 2, 3, 4, 5, 6, 7, 8, 9, ......\)

\(\D a(n)=\bigg\lfloor\bigg(\frac{\pi^2}{6}-\sum_{k=1}^{n}\ \frac{1}{k^2}\bigg)^{-1}\bigg\rfloor=1, 2, 3, 4, 5, 6, 7, 8, 9, ......\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-7-28 15:22:16 | 显示全部楼层
王守恩 发表于 2022-7-24 16:39
从简单算起。

\(\D\frac{1}{1^2}>\frac{\pi^2}{6}-\frac{1}{1}\)

这些数字串可是在《整数序列在线百科全书(OEIS)》找不到的。

Table[Ceiling[n /\[Pi]], {n, 0, 50}]
{0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16}

Table[Ceiling[n /E], {n, 0, 50}]
{0, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19}

Table[Ceiling[(2 n )/\[Pi]], {n, 0, 50}]
{0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32}

Table[Ceiling[(2 n )/E], {n, 0, 50}]
{0, 1, 2, 3, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 11, 12, 12, 13, 14, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 28, 29, 30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 37}

Table[Ceiling[(3 n )/\[Pi]], {n, 0, 50}]
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48}

Table[Floor[(3 n )/E], {n, 0, 50}]
{0, 1, 2, 3, 4, 5, 6, 7, 8,  9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 54, 55}

Table[Floor[(4 n )/\[Pi]], {n, 0, 50}]
{0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 38, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63}

............
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-8-3 12:39:47 | 显示全部楼层
王守恩 发表于 2022-7-28 15:22
这些数字串可是在《整数序列在线百科全书(OEIS)》找不到的。

Table[Ceiling[n /\], {n, 0, 50}]

n 个人围成一圈,选出 k 个人,全部选出的人均不相邻的情况有多少种?

k=1: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
k=2: 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189,209, 230, 252,275, 299,  
k=3: 2, 7, 16, 30, 50, 77, 112, 156, 210, 275, 352, 442,546, 665, 800, 952, 1122, 1311, 1520, 1750,
k=4: 2, 9, 25, 55, 105, 182, 294, 450, 660, 935, 1287, 1729,2275, 2940,3740,4692,5814,7125,8645,
k=5: 2, 11, 36, 91, 196, 378, 672, 1122, 1782, 2717, 4004,5733, 8008, 10948, 14688,19380,25194,
k=6: 2, 13, 49, 140, 336, 714, 1386, 2508, 4290, 7007, 11011, 16744, 24752,35700, 50388, 69768,
k=7: 2, 15, 64, 204, 540, 1254,  2640, 5148,  9438, 16445, 27456, 44200,  68952, 104652, 155040,
k=8: 2, 17, 81, 285, 825, 2079, 4719, 9867, 19305,35750, 63206, 107406,176358, 281010,436050,
k=9: 2, 19, 100, 385, 1210, 3289,  8008, 17875, 37180,  72930, 136136,  243542, 419900, 700910,

\(a(n)=\frac{(n - 1 + 2 k) (n - 2 + k)!}{(n - 1)! k!}\)

这些数字串,可是在《整数序列在线百科全书(OEIS)》不一定找得到的。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-8-3 15:08:55 | 显示全部楼层
王守恩 发表于 2022-8-3 12:39
n 个人围成一圈,选出 k 个人,全部选出的人均不相邻的情况有多少种?

k=1: 2, 3, 4, 5, 6, 7, 8, 9, ...

一个数若是 3 的倍数,就除以 3,否则就减去 1,问:几次这样操作后 2022 会变成 1 ?

给出 1——81 的答案。 2022 的答案是15。15次这样操作后 2022 会变成 1。

{0, 1, 1, 2, 3, 2, 3, 4, 2, 3, 4, 3, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6, 5, 6, 7, 3,
4, 5, 4, 5, 6, 5, 6, 7, 4, 5, 6, 5, 6, 7, 6, 7, 8, 5, 6, 7, 6, 7, 8, 7, 8, 9, 4,
5, 6, 5, 6, 7, 6, 7, 8, 5, 6, 7, 6, 7, 8, 7, 8, 9, 6, 7, 8, 7, 8, 9, 8, 9, 10, 4}

Table[Total[IntegerDigits[n, 3]] + Floor[Log[3, n]] - 1, {n, 1, 81}]
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-9-30 10:39:23 | 显示全部楼层
A000982       

1, 2, 5, 8, 13, 18, 25, 32, 41, 50, 61, 72, 85, 98, 113, 128, 145, 162, 181, 200, 221, 242, 265, 288,
313, 338, 365, 392, 421, 450, 481, 512, 545, 578, 613, 648, 685, 722, 761, 800, 841, 882, 925, 968,
1013, 1058, 1105, 1152, 1201, 1250, 1301, 1352, 1405, 1458, 1513, 1568, 1625, 1682, 1741, ..........

\(a(n)=\frac{n(n+2)+GCD(n,(n+2))}{2}\)


A183859       

1, 3, 5, 9, 13, 17, 23, 29, 35, 43, 51, 59, 69, 79, 89, 101, 113, 125, 139, 153, 167, 183, 199,
215, 233, 251, 269, 289, 309, 329, 351, 373, 395, 419, 443, 467, 493, 519, 545, 573, 601, 629,
659, 689, 719, 751, 783, 815, 849, 883, 917, 953, 989, 1025, 1063, 1101, 1139, 1179, 1219,.....

\(a(n)=\frac{n(n+3)- GCD(n,(n+3))}{3}\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-10-3 19:03:18 | 显示全部楼层
将 0~n(可重复)填入 n×n 格子,下面不能大于上面,左边不能大于右边,有几种填法?

2, 20, 980, 232848, 267227532, 1478619421136, 39405996318420160,
5055160684040254910720, 3120344782196754906063540800, ......

\(\D a(n)=\prod_{i=1}^{n+1}\ \prod_{j=1}^{n+1}\frac{i+j+n}{i+j-1}\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2022-10-3 19:25:03 | 显示全部楼层
王守恩 发表于 2022-10-3 19:03
将 0~n(可重复)填入 n×n 格子,下面不能大于上面,左边不能大于右边,有几种填法?

2, 20, 980, 2 ...

钩子公式。

评分

参与人数 1威望 +9 金币 +9 贡献 +9 经验 +9 鲜花 +9 收起 理由
王守恩 + 9 + 9 + 9 + 9 + 9 谢谢 aimisiyou!谢谢钩子公式!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2022-10-7 13:15:37 | 显示全部楼层
正方形网格里的最大可填数,满足任意2*2网格都有空格

{1, 3, 8, 12, 21, 27, 40, 48, 65, 75, 96, 108, 133, 147, 176, 192, 225, 243, 280, 300, 341, 363,
408, 432, 481, 507, 560, 588, 645, 675, 736, 768, 833, 867, 936, 972, 1045, 1083, 1160, 1200,
1281, 1323, 1408, 1452, 1541, 1587, 1680, 1728, 1825, 1875, 1976, 2028, 2133, 2187, 2296,....

\(a(n)=n^2-\lfloor\frac{n}{2}\rfloor^2\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-9 02:20 , Processed in 0.027341 second(s), 16 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表