本帖最后由 王守恩 于 2021-8-13 07:00 编辑
1,已知三角形每条边的边长皆为整数,且周界为2015。求三角形边长的可能组合的数目.
{0, 0, 1, 0, 3, 1, 6, 3, 10, 6, 15, 10, 21, 15, 28, 21, 36, 28, 45, 36, 55,45, 66, 55, 78, 66, 91,
78, 105, 91, 120, 105, 136, 120,153, 136, 171,153, 190, 171, 210, 190, 231, 210, 253, 231, 276,
253, 300, 276, 325, 300, 351, 325, 378, 351, 406, 378, 435, 406, 465, 435, 496, 465, 528, .........}
\(\D a(n)=\frac{(2n-3\cos(n\pi)-1)(2n-3\cos(n\pi)-5)\ \ \ }{32}\)
特别地,\(a(2015)=507528\)
2,已知三角形每条边的边长皆为整数,且周界为2015。求三角形边长的可能组合的数目(各种排列只计算1种).
{0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19,24,
21, 27, 24, 30, 27, 33, 30, 37, 33, 40,37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70,65, 75,
70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114, 127, 120, 133, 127, ......}
\(\D a(n)=[\frac{(2n-3\cos(n\pi)+3)^2 \ \ \ }{192}]\ \ \ [\ \ ]\)表示四舍五入
或:\(\D a(n)=\frac{6n^2+18n-9(2n+3)\cos(n\pi)-36\sin(n\pi/2)-36\cos(n\pi/2)+64\cos(2n\pi/3)-1\ \ \ \ \ \ \ \ \ }{288}\)
特别地,\(a(2015)=84840\)
3,可以归纳到一个公式上来。
CoefficientList[Series[\(\D\frac{x^a}{\prod_{k = 1}^a(1 - x^k)} -\frac{ 1}{\prod_{k = 1}^{a-1}(1 - x^{2k})}*\frac{x^{2 a - 2}\ }{1 - x}\)],x]
3边形:{0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27},
4边形:{0, 0, 0, 0, 1, 1, 1, 2, 3, 4, 5, 7, 8, 11, 12, 16, 18, 23, 24, 31, 33, 41, 43, 53, 55, 67, 69, 83, 86, 102, 104, 123, 126, 147, 150, 174, 177},
5边形:{0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 16, 23, 25, 35, 39, 52, 57, 74, 81, 103, 111, 139, 150, 184, 197, 239, 256, 306, 325, 385, 409, 480, 507},
6边形:{0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 9, 12, 16, 22, 28, 37, 46, 59, 71, 91, 107, 134, 157, 193, 222, 271, 308, 371, 419, 499, 559, 661, 734, 860, 952},
7边形:{0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 34, 42, 58, 70, 93, 112, 145, 171, 218, 256, 320, 372, 458, 528, 643, 735, 884,1006,1198,1352},
8边形:{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 36, 48, 63, 82, 104, 134, 167, 211, 258, 322, 389, 480, 572, 698, 825, 996, 1165, 1395,1620},
9边形:{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 7, 11,14, 21, 28, 39, 50, 69, 87, 116, 145, 189, 233, 299, 363, 458, 553, 687, 820, 1009, 1195, 1453, 1709},
........
n=0,1,2,3,4,..... |