找回密码
 欢迎注册
楼主: 王守恩

[原创] 数字串的通项公式

 火... [复制链接]
 楼主| 发表于 2020-12-11 11:02:32 | 显示全部楼层
本帖最后由 王守恩 于 2020-12-11 11:03 编辑
王守恩 发表于 2020-10-31 17:35
\(\D\sum_{k=1}^{\infty}\frac{k^n}{2^k}\)
{1, 2, 6, 26, 150, 1082, 9366, 94586, 1091670, 14174522, ...


  挺好的数字串!太久了,我来动一动。
LinearRecurrence[{4, -6, 4, -1}, {2, 9, 25, 56}, 21]
{2, 9, 25, 56, 108, 187, 299, 450, 646, 893, 1197, 1564,
2000, 2511, 3103, 3782, 4554, 5425, 6401, 7488, 8692}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2020-12-19 10:46:40 | 显示全部楼层
本帖最后由 王守恩 于 2020-12-19 10:49 编辑
王守恩 发表于 2020-12-11 11:02
挺好的数字串!太久了,我来动一动。
LinearRecurrence[{4, -6, 4, -1}, {2, 9, 25, 56}, 21]
{2,  ...


A134593
1, 16, 41, 76, 121, 176, 241, 316, 401, 496, 601, 716, 841, 976, 1121, 1276, 1441, 1616,
1801, 1996, 2201, 2416, 2641, 2876, 3121, 3376, 3641, 3916, 4201, 4496, 4801, 5116,
5441, 5776, 6121, 6476, 6841, 7216, 7601, 7996, 8401, 8816, 9241, 9676, 10121, ....

\(\D a(n)=\frac{(1 + \sqrt{n})^5 + (1 - \sqrt{n})^5}{2}\)

注: 蛮好的通项,可惜了,只要把 “5” 改一改,可以出来好多好多数字串(详见《整数三角形》)。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-1-4 14:05:18 | 显示全部楼层
本帖最后由 王守恩 于 2021-1-4 14:06 编辑
王守恩 发表于 2020-12-19 10:46
A134593
1, 16, 41, 76, 121, 176, 241, 316, 401, 496, 601, 716, 841, 976, 1121, 1276, 1441, 1616 ...


{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}

\(\D a_{(n+1)}=\lim_{x\to\infty}\frac{\ln\big(\sum_{k=1}^{x}k^n\big)}{\ln(x)}\)
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-1-5 16:32:17 | 显示全部楼层
王守恩 发表于 2021-1-4 14:05
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26 ...


      A164118      这通项不是挺好?!
    LinearRecurrence[{1, -1, 1, -1}, {0, -1, -2, -1}, n]
0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0,
0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0,
0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0, 0, -1, -2, -1, 0, 0, 1, 2, 1, 0,
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-1-12 15:39:48 | 显示全部楼层
本帖最后由 王守恩 于 2021-1-12 15:41 编辑
王守恩 发表于 2021-1-5 16:32
A164118      这通项不是挺好?!
    LinearRecurrence[{1, -1, 1, -1}, {0, -1, -2, -1}, n]
...


A000254\(\D\ \ \ a(n)=\sum_{k=0}^{n-1}\frac{k(n-1)!}{n-k}+n!\)
0, 1, 3, 11, 50, 274, 1764, 13068, 109584, 1026576, 10628640, 120543840, 1486442880,
19802759040, 283465647360, 4339163001600, 70734282393600, 1223405590579200,
22376988058521600, 431565146817638400, 8752948036761600000, 186244810780170240000
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-4-17 15:08:48 | 显示全部楼层
本帖最后由 王守恩 于 2021-4-17 15:43 编辑
dlpg070 发表于 2020-7-6 14:38
回复王守恩:
由2个基本语句实现2020=?.?的代码
这是一个简单问题,适合做演示,这是初学者与初学者的对话 ...


     谢谢 dlpg070!想你了!

       A001045\(\D\ \ \ \  a(n)=\bigg[\frac{2^n}{3}\bigg]\)       

  0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691,
  87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243,
  89478485, 178956971, 357913941, 715827883, 1431655765, 2863311531, 5726623061,....................

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-4-27 18:29:36 | 显示全部楼层
王守恩 发表于 2021-4-17 15:08
谢谢 dlpg070!想你了!

       A001045\(\D\ \ \ \  a(n)=\bigg[\frac{2^n}{3}\bigg]\)       


将 n 个不同整数排成一排,每两个数之间有一个不等号(< 或 >),出现 m 个 > 号的排列有几种?

1!=1
2!=1+  1
3!=1+  4  +    1
4!=1+ 11 +   11   +    1
5!=1+ 26 +   66   +   26   +     1
6!=1+ 57 +  302  +  302  +    57    +    1
7!=1+120+ 1191 + 2416 +  1191  +  120  +    1
8!=1+247+ 4293 +15619+ 15619 + 4293 +  247  +  1
9!=1+502+14608+88234+156190+88234+14608+502+1
...................

\(\ \ \ \displaystyle\sum_{k=1}^{m}\frac{(m-k)^{n+m}(n+m+1)!}{\cos(k\pi)k!(n+m+1-k)!}+m^{n+m}\)

{{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, 4, 11, 26, 57, 120, 247, 502, 1013, 2036, 4083, 8178, 16369, 32752, 65519,131054,262125,524268,},
{1, 11, 66, 302, 1191, 4293, 14608, 47840, 152637, 478271, 1479726, 4537314, 13824739, 41932745,},
{1, 26,  302, 2416, 15619, 88234, 455192, 2203488, 10187685, 45533450, 198410786, 848090912,},
{1, 57,1191, 15619, 156190, 1310354, 9738114, 66318474,423281535,2571742175,15041229521,},
{1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863, 102776998928,},
{1, 247,14608,455192,9738114,162512286,2275172004,27971176092,311387598411,3207483178157,},
{1, 502, 47840, 2203488, 66318474, 1505621508, 27971176092, 447538817472, 6382798925475,}}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-5-4 09:10:30 | 显示全部楼层
本帖最后由 王守恩 于 2021-5-4 09:14 编辑
王守恩 发表于 2021-4-27 18:29
将 n 个不同整数排成一排,每两个数之间有一个不等号(< 或 >),出现 m 个 > 号的排列有几种?

1!=1 ...


\(\D a_{n}=\lfloor\ (e-\frac{\lfloor\ e*k!\ \rfloor}{k!})*n!\ \rfloor\ \ \ \ a_{1}=0\ \ \ \ a_{n+1}=(n+k)*a_{n}+1\ \ \ \ k=1, 2, 3, 4, 5, 6, ...\)

\(\ \ \ k=1,\ \ \ A056542\)
{0, 1, 4, 17, 86, 517, 3620, 28961, 260650, 2606501, 28671512, 344058145,
4472755886, 62618582405, 939278736076, 15028459777217, 255483816212690,
4598708691828421, 87375465144740000, 1747509302894800001, 36697695360790800022,}

\(\ \ \ k=2,\ \ \ A185108\)
{0, 1, 5, 26, 157, 1100, 8801, 79210, 792101, 8713112, 104557345, 1359245486,
19029436805, 285441552076, 4567064833217, 77640102164690, 1397521838964421,
26552914940324000, 531058298806480001, \11152224274936080022, 245348934048593760485,}

\(\ \ \ k=3,\ \ \ A079751\)
{0, 1, 6, 37, 260, 2081, 18730, 187301, 2060312, 24723745, 321408686, 4499721605,
67495824076, 1079933185217, 18358864148690, 330459554676421, 6278731538852000,
125574630777040001, 2637067246317840022, 58015479418992480485, 1334356026636827051156,}

\(\ \ \ k=4,\ \ \ ?\)
{0, 1, 7, 50, 401, 3610, 36101, 397112, 4765345, 61949486, 867292805, 13009392076,
208150273217, 3538554644690, 63693983604421, 1210185688484000, 24203713769680001,
508277989163280022, 11182115761592160485, 257188662516619691156, 6172527900398872587745,}

\(\ \ \ k=5,\ \ \ ?\)
{0, 1, 8, 65, 586, 5861, 64472, 773665, 10057646, 140807045, 2112105676, 33793690817,
574492743890, 10340869390021, 196476518410400, 3929530368208001, 82520137732368022,
1815443030112096485, 41755189692578219156, 1002124552621877259745, 25053113815546931493626,}

\(\ \ \ k=6,\ \ \ ?\)
{0, 1, 9, 82, 821, 9032, 108385, 1409006, 19726085, 295891276, 4734260417, 80482427090,
1448683687621, 27524990064800, 550499801296001, 11560495827216022, 254330908198752485,
5849610888571307156, 140390661325711371745, 3509766533142784293626, 91253929861712391634277,}

..............
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-6-16 09:33:06 | 显示全部楼层
王守恩 发表于 2021-5-4 09:10
\(\D a_{n}=\lfloor\ (e-\frac{\lfloor\ e*k!\ \rfloor}{k!})*n!\ \rfloor\ \ \ \ a_{1}=0\ \ \ \ a_{n ...


\(\D a(n)=\frac{3*5^n-\cos(n\pi)}{2}\)
{1, 8, 37, 188, 937, 4688, 23437, 117188, 585937, 2929688, 14648437,
73242188, 366210937, 1831054688, 9155273437, 45776367188, .....
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
 楼主| 发表于 2021-6-20 08:10:34 | 显示全部楼层
王守恩 发表于 2021-6-16 09:33
\(\D a(n)=\frac{3*5^n-\cos(n\pi)}{2}\)
{1, 8, 37, 188, 937, 4688, 23437, 117188, 585937, 292968 ...

简单的也没有。LinearRecurrence[{1, 20}, {3, 7}, 23]

{3, 7, 67, 207, 1547, 5687, 36627, 150367, 882907, 3890247, 21548387, 99353327,
530321067, 2517387607, 13123808947, 63471561087, 325947740027, 1595378961767,
8114333762307, 40021912997647, 202308588243787, 1002746848196727, 5048918613072467}
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2025-1-9 16:32 , Processed in 0.043629 second(s), 15 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表