- 注册时间
- 2009-6-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 19887
- 在线时间
- 小时
|
发表于 2019-4-24 20:10:06
|
显示全部楼层
我们仿照楼上75#的计算方案:
我们对圆锥曲线
\(x^2x_0^2+y^2y_0^2+z^2z_0^2-2xx_0yy_0-2xx_0zz_0-2yy_0zz_0=0\)
在不变曲线上有\(x=x_0,y=y_0,z=z_0\)
即有不变曲线的切线方程:
\((4x_0^3-4x_0y_0^2-4x_0z_0^2)x+(-4x_0^2y_0+4y_0^3-4y_0z_0^2)y+(-4x_0^2z_0-4y_0^2z_0+4z_0^3)z=0\)
我们设切线方程的系数:
\(a_1=4x_0^3-4x_0y_0^2-4x_0z_0^2\)
\(b_1=-4x_0^2y_0+4y_0^3-4y_0z_0^2\)
\(c_1=-4x_0^2z_0-4y_0^2z_0+4z_0^3\)
\(x_0+y_0+z_0=1\)
消元得到:
\(a_1^4b_1^2-2a_1^4b_1c_1+a_1^4c_1^2-2a_1^3b_1^3+2a_1^3b_1^2c_1+2a_1^3b_1c_1^2-2a_1^3c_1^3+a_1^2b_1^4+2a_1^2b_1^3c_1-6a_1^2b_1^2c_1^2+2a_1^2b_1c_1^3+a_1^2c_1^4-2a_1b_1^4c_1+2a_1b_1^3c_1^2+2a_1b_1^2c_1^3-2a_1b_1c_1^4+b_1^4c_1^2-2b_1^3c_1^3+b_1^2c_1^4+8a_1^5-4a_1^4b_1-4a_1^4c_1-8a_1^3b_1^2-8a_1^3c_1^2-8a_1^2b_1^3+16a_1^2b_1^2c_1+16a_1^2b_1c_1^2-8a_1^2c_1^3-4a_1b_1^4+16a_1b_1^2c_1^2-4a_1c_1^4+8b_1^5-4b_1^4c_1-8b_1^3c_1^2-8b_1^2c_1^3-4b_1c_1^4+8c_1^5-32a_1^4-72a_1^3b_1-72a_1^3c_1-112a_1^2b_1^2-288a_1^2b_1c_1-112a_1^2c_1^2-72a_1b_1^3-288a_1b_1^2c_1-288a_1b_1c_1^2-72a_1c_1^3-32b_1^4-72b_1^3c_1-112b_1^2c_1^2-72b_1c_1^3-32c_1^4-32a_1^2b_1-32a_1^2c_1-32a_1b_1^2-64a_1b_1c_1-32a_1c_1^2-32b_1^2c_1-32b_1c_1^2=0\)
依楼上的计算我们有:
\(a_1=\frac{yat}{2s}\)
\(b_1=-\frac{(a^2y+b^2y-c^2y-4as+4sx)t}{4as}\)
\(c_1=-\frac{(a^2y-b^2y+c^2y-4sx)t}{4as}\)
为了求得\(t\)值,我们取特殊正三角形及对偶不动曲线的三个不动点
\(a=1,b=1,c=1,s=\frac{\sqrt{3}}{4},x=\frac{(9a^2-b^2+c^2)}{18a},y=\frac{2s}{9a}\)
\(a=1,b=1,c=1,s=\frac{\sqrt{3}}{4},x=\frac{2(3a^2-b^2+c^2)}{9a},y=\frac{8s}{9a}\)
\(a=1,b=1,c=1,s=\frac{\sqrt{3}}{4},x=\frac{3a^2-2b^2+2c^2}{9a},y=\frac{8s}{9a}\)
均算得
\(t^2+228t+96=0\)
取\(t=-114+10\sqrt{129}\)
然后算得不动曲线的方程(重心坐标)
\(-32(y_1+z_1))(x_1+z_1)(x_1+y_1)+(-32x_1^4-72x_1^3y_1-72x_1^3z_1-112x_1^2y_1^2-288x_1^2y_1z_1-112x_1^2z_1^2-72x_1y_1^3-288x_1y_1^2z_1-288x_1y_1z_1^2-72x_1z_1^3-32y_1^4-72y_1^3z_1-112y_1^2z_1^2-72y_1z_1^3-32z_1^4)t+(8x_1^5-4x_1^4y_1-4x_1^4z_1-8x_1^3y_1^2-8x_1^3z_1^2-8x_1^2y_1^3+16x_1^2y_1^2z_1+16x_1^2y_1z_1^2-8x_1^2z_1^3-4x_1y_1^4+16x_1y_1^2z_1^2-4x_1z_1^4+8y_1^5-4y_1^4z_1-8y_1^3z_1^2-8y_1^2z_1^3-4y_1z_1^4+8z_1^5)t^2+(y_1-z_1)^2(x_1-z_1)^2(x_1-y_1)^2t^3=0\)
代入重心坐标反演公式得:(神奇了得到了胡子不变曲线的高级版,6次方程)
\(1024a^4s^3(ay-2s)(a^2y+b^2y-c^2y+4sx)(a^2y-b^2y+c^2y+4as-4sx)-128a^2s^2(9a^8y^4+6a^4b^4y^4-12a^4b^2c^2y^4+6a^4c^4y^4+b^8y^4-4b^6c^2y^4+6b^4c^4y^4-4b^2c^6y^4+c^8y^4+6a^7sy^3-24a^5b^2sy^3+24a^5c^2sy^3+48a^4b^2sxy^3-48a^4c^2sxy^3-38a^3b^4sy^3+76a^3b^2c^2sy^3-38a^3c^4sy^3-8ab^6sy^3+24ab^4c^2sy^3-24ab^2c^4sy^3+8ac^6sy^3+16b^6sxy^3-48b^4c^2sxy^3+48b^2c^4sxy^3-16c^6sxy^3-20a^6s^2y^2-96a^5s^2xy^2+152a^4b^2s^2y^2-152a^4c^2s^2y^2+96a^4s^2x^2y^2-304a^3b^2s^2xy^2+304a^3c^2s^2xy^2+44a^2b^4s^2y^2-88a^2b^2c^2s^2y^2+44a^2c^4s^2y^2-96ab^4s^2xy^2+192ab^2c^2s^2xy^2-96ac^4s^2xy^2+96b^4s^2x^2y^2-192b^2c^2s^2x^2y^2+96c^4s^2x^2y^2-112a^5s^3y+608a^4s^3xy-112a^3b^2s^3y+112a^3c^2s^3y-608a^3s^3x^2y+352a^2b^2s^3xy-352a^2c^2s^3xy-384ab^2s^3x^2y+384ac^2s^3x^2y+256b^2s^3x^3y-256c^2s^3x^3y+256a^4s^4-448a^3s^4x+704a^2s^4x^2-512as^4x^3+256s^4x^4)t+8a^2s(27a^9y^5-18a^5b^4y^5+36a^5b^2c^2y^5-18a^5c^4y^5-9ab^8y^5+36ab^6c^2y^5-54ab^4c^4y^5+36ab^2c^6y^5-9ac^8y^5+54a^8sy^4+72a^6b^2sy^4-72a^6c^2sy^4-144a^5b^2sxy^4+144a^5c^2sxy^4+132a^4b^4sy^4-264a^4b^2c^2sy^4+132a^4c^4sy^4+72a^2b^6sy^4-216a^2b^4c^2sy^4+216a^2b^2c^4sy^4-72a^2c^6sy^4-144ab^6sxy^4+432ab^4c^2sxy^4-432ab^2c^4sxy^4+144ac^6sxy^4+22b^8sy^4-88b^6c^2sy^4+132b^4c^4sy^4-88b^2c^6sy^4+22c^8sy^4-144a^7s^2y^3+288a^6s^2xy^3-528a^5b^2s^2y^3+528a^5c^2s^2y^3-288a^5s^2x^2y^3+1056a^4b^2s^2xy^3-1056a^4c^2s^2xy^3-560a^3b^4s^2y^3+1120a^3b^2c^2s^2y^3-560a^3c^4s^2y^3+864a^2b^4s^2xy^3-1728a^2b^2c^2s^2xy^3+864a^2c^4s^2xy^3-176ab^6s^2y^3+528ab^4c^2s^2y^3-864ab^4s^2x^2y^3-528ab^2c^4s^2y^3+1728ab^2c^2s^2x^2y^3+176ac^6s^2y^3-864ac^4s^2x^2y^3+352b^6s^2xy^3-1056b^4c^2s^2xy^3+1056b^2c^4s^2xy^3-352c^6s^2xy^3+448a^6s^3y^2-2112a^5s^3xy^2+1664a^4b^2s^3y^2-1664a^4c^2s^3y^2+2112a^4s^3x^2y^2-4480a^3b^2s^3xy^2+4480a^3c^2s^3xy^2+704a^2b^4s^3y^2-1408a^2b^2c^2s^3y^2+3456a^2b^2s^3x^2y^2+704a^2c^4s^3y^2-3456a^2c^2s^3x^2y^2-2112ab^4s^3xy^2+4224ab^2c^2s^3xy^2-2304ab^2s^3x^3y^2-2112ac^4s^3xy^2+2304ac^2s^3x^3y^2+2112b^4s^3x^2y^2-4224b^2c^2s^3x^2y^2+2112c^4s^3x^2y^2-1408a^5s^4y+6656a^4s^4xy-1408a^3b^2s^4y+1408a^3c^2s^4y-8960a^3s^4x^2y+5632a^2b^2s^4xy-5632a^2c^2s^4xy+4608a^2s^4x^3y-8448ab^2s^4x^2y+8448ac^2s^4x^2y-2304as^4x^4y+5632b^2s^4x^3y-5632c^2s^4x^3y+1024a^4s^5-5632a^3s^5x+11264a^2s^5x^2-11264as^5x^3+5632s^5x^4)t^2=0\)
我们取(下面为了输入方便,我们设\(\sqrt{3}=\alpha,\sqrt{129}=\beta\)
为了作对比:我们把交点变换(对偶变换)的不变曲线(金色),和对称变换的不变曲线(红色)放在一起,mathe圆锥曲线变换(简称mathe变换)的不动曲线(蓝色),mathe不动直线(红色点线)
\(a=1,b=1,c=1,s=\frac{\sqrt{3}}{4}\)
mathe 变换的不变曲线:
\(((2365740x^4y-6984360x^2y^3-10260y^5-4731480x^3y+6984360xy^3+3038970x^2y-1740990y^3-673230xy+18915y)\beta-26869644x^4y+79327080x^2y^3+116532y^5+53739288x^3y-79327080xy^3-34516110x^2y+19773850y^3+7646466xy-214845y)\alpha+(1167480x^6-7004880x^4y^2+10507320x^2y^4-3502440x^5+14009760x^3y^2-10507320xy^4+3737700x^4-5366880x^2y^2+2611260y^4-1638000x^3-1638000xy^2+178515x^2+851745y^2+56745x-10440)\beta-13260024x^6+79560144x^4y^2-119340216y^4x^2+39780072x^5-159120288x^3y^2+119340216xy^4-42452100x^4+60956064x^2y^2-29658204y^4+18604080x^3+18604080xy^2-2027493x^2-9673959y^2-644535x+118584=0\)
交点变换与对称变换曲线一样:
\((x^2-8y^2-x)\alpha-27x^2y+9y^3+27xy-y=0\)
\(a=5,b=4,c=3,s=6\)
mathe变换不变曲线:
\(-1461343106349y^6-320786500608x^5y+4085943795360x^3y^3-9844522488108xy^5+(16139243520x^6+28243676160x^5y-294625252800x^4y^2-359747287200x^3y^3+1380016815300x^2y^4+866761863660xy^5+128664084605y^6-242088652800x^5+157953888000x^4y+3542419008000x^3y^2-1951950636000x^2y^3-9714047431500xy^4-2604455600400y^5+1291749120000x^4-3602957760000x^3y-9849658320000x^2y^2+19856464560000xy^3+16093349070000y^4-2830464000000x^3+13933782000000x^2y-363352500000xy^2-31964886000000y^3+1542369600000x^2-17277494400000xy+18784850400000y^2+2451384000000x+3268512000000y-2255040000000)\beta+2749598576640x^5-183306571776x^6-40234146854400x^3y^2+110330370758700xy^4-15673978219140y^4x^2+3346299656640x^4y^2+196236017280000xy-225526064400000xy^3+22169896408800x^2y^3-158257625040000x^2y+40921744320000x^3y-1794011846400x^4y+111870648720000x^2y^2+4126602780000xy^2+29580931397520y^5+363051337680000y^3-213354384480000y^2-14671445760000x^4+32147850240000x^3-182785274730000y^4-17517539520000x^2-27843912000000x-37125216000000y+25614144000000=0\)
交点变换的不变曲线:
\(193536x^3-4810752x^2y-2419200xy^2+4147200y^3+276480x^2+24053760xy-15552000y^2-6220800x=0\)
对称变换的不变曲线:
\(-77760x^2y-45360xy^2+77760y^3+13824x^2+396864xy-245424y^2-69120x-92160y=0\)
|
|