- 注册时间
- 2012-4-20
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 3061
- 在线时间
- 小时
|
发表于 2024-12-2 22:50:20
|
显示全部楼层
可以应用《有理表示》例 6.11.13的结论给一个解答如下:
设\(\triangle{ABC}\) 是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的一个最大周长内接三角形, 点\(B=a \cos{\theta} + b \sin {\theta} i \),
\[\mathop {BA}\limits^ \to = \frac{{(s + t)(1 - st)}}{{s{{\left( {1 - it} \right)}^2}}}\mathop {BC}\limits^ \to \]
则椭圆上的任意一点\(P\)有表示:
\[\mathop {BP}\limits^ \to = \frac{{(1 - u)(ps + pt - p{s^2}t - ps{t^2} - su + 2istu + s{t^2}u)}}{{s{{(1 - it)}^2}(p - u - pu + qu + {u^2})}}\mathop {BC}\limits^ \to \]
其中 \(p = \frac{{s(1 + {t^2})}}{{(s + t)(1 - st)}},q = \frac{{t(1 + {s^2})}}{{(s + t)(1 - st)}}\), 根据这个表示, 由6.9.4外接圆锥曲线离心率的表示,得
\[\frac{{{{\left( {{e^2} - 2} \right)}^2}}}{{{e^2} - 1}} = - \frac{{{{({a^2} + {b^2})}^2}}}{{{a^2}{b^2}}} = \frac{{{{( - 1 - {s^2} - 4st - {t^2} + 3{s^2}{t^2})}^2}}}{{4st( - 1 + st)(1 + {s^2} + st + {t^2})}}\]
又根据marden定理,若设圆锥曲线的焦点\(F\)为\( \mathop {BF}\limits^ \to = z\mathop {BC}\limits^ \to \), 则\(z\)应满足方程(可见于例6.7.19):
\[s{(1 - it)^2}(1 + {s^2} + st + {t^2}){z^2} - (1 - it)(s + t)(1 + {s^2} + it - i{s^2}t - 2is{t^2})z + t{(s + t)^2}(1 - st) = 0\]
并且Mittenpunkt点\(X_9\)恰为椭圆的中心
\[\mathop {B{X_9}}\limits^ \to = \frac{{(s + t)(1 + {s^2} + it - i{s^2}t - 2is{t^2})}}{{2s(1 - it)(1 + {s^2} + st + {t^2})}}\mathop {BC}\limits^ \to \]
现在我们将已知的各点表示代入上面的式子, 即有:
\[\left\{ \begin{array}{l}
\sqrt {{a^2} - {b^2}} - a\cos \theta - bi\sin \theta = z\mathop {BC}\limits^ \to \\
s{(1 - it)^2}(1 + {s^2} + st + {t^2}){z^2} - (1 - it)(s + t)(1 + {s^2} + it - i{s^2}t - 2is{t^2})z + t{(s + t)^2}(1 - st) = 0 \\
0 - a\cos \theta - bi\sin \theta = \frac{{(s + t)(1 + {s^2} + it - i{s^2}t - 2is{t^2})}}{{2s(1 - it)(1 + {s^2} + st + {t^2})}}\mathop {BC}\limits^ \to \\
\end{array} \right.\]
消去\(\mathop {BC}\limits^ \to\) 及 \(z\), 得\(s, t\)与 \(\theta\)的关系:
\[({a^2} - {b^2})( - 1 - 2{s^2} - {s^4} - 2it - 4st - 4{s^3}t + 2i{s^4}t + {t^2} + 4is{t^2} - 2{s^2}{t^2} + 4i{s^3}{t^2} + 5{s^4}{t^2} - 8s{t^3} + 8{s^3}{t^3} + 8{s^2}{t^4}) + ({a^2} + {b^2})(1 + {s^2})( - i + s)( - i + t)( - 1 + is - it + 3st)\cos 2\theta + 2ab(1 + {s^2})( - i + s)( - i + t)( - i - s + t + 3ist)\sin 2\theta = 0\]
分离实、虚部得:
\[\left\{ \begin{array}{l}
({a^2} - {b^2})( - 1 - 2{s^2} - {s^4} - 4st - 4{s^3}t + {t^2} - 2{s^2}{t^2} + 5{s^4}{t^2} - 8s{t^3} + 8{s^3}{t^3} + 8{s^2}{t^4}) + ({a^2} + {b^2})(1 + {s^2})(1 + {s^2} - 4st - {t^2} + 3{s^2}{t^2})\cos 2\theta + 4ab(1 + {s^2})t( - 1 + {s^2} + 2st)\sin 2\theta = 0 \\
2({a^2} - {b^2})(1 + {s^2})t( - 1 + {s^2} + 2st) - 2({a^2} + {b^2})(1 + {s^2})t( - 1 + {s^2} + 2st)\cos 2\theta + 2ab(1 + {s^2})(1 + {s^2} - 4st - {t^2} + 3{s^2}{t^2})\sin 2\theta = 0 \\
\end{array} \right.\]
我们可以解出\(\cos{2\theta}, \sin{2\theta}\):
\[\left\{ \begin{array}{l}
\cos 2\theta = \frac{{({a^2} - {b^2})(1 + {s^2} + 4st + {t^2} - 3{s^2}{t^2})(1 + 2{s^2} + {s^4} - 4st - 4{s^3}t + {t^2} - 2{s^2}{t^2} + 5{s^4}{t^2} - 8s{t^3} + 8{s^3}{t^3} + 8{s^2}{t^4})}}{{({a^2} + {b^2}){{(1 + {s^2})}^2}(1 + {t^2})(1 + {s^2} - 8st + {t^2} + 9{s^2}{t^2})}} \\
\sin 2\theta = \frac{{8({a^2} - {b^2})s{t^2}(1 - st)( - 1 + {s^2} + 2st)(1 + {s^2} + st + {t^2})}}{{ab{{(1 + {s^2})}^2}(1 + {t^2})(1 + {s^2} - 8st + {t^2} + 9{s^2}{t^2})}} \\
\end{array} \right.\]
并由二者平方之和等于1得到关系式:
\[{a^2}{b^2} + 2{a^2}{b^2}{s^2} + {a^2}{b^2}{s^4} - 4{a^4}st - 4{b^4}st - 4{a^4}{s^3}t - 4{b^4}{s^3}t + 2{a^2}{b^2}{t^2} + 12{a^2}{b^2}{s^2}{t^2} + 4{a^4}{s^4}{t^2} + 2{a^2}{b^2}{s^4}{t^2} + 4{b^4}{s^4}{t^2} - 4{a^4}s{t^3} - 4{b^4}s{t^3} + 4{a^4}{s^3}{t^3} - 16{a^2}{b^2}{s^3}{t^3} + 4{b^4}{s^3}{t^3} + {a^2}{b^2}{t^4} + 4{a^4}{s^2}{t^4} + 2{a^2}{b^2}{s^2}{t^4} + 4{b^4}{s^2}{t^4} + 9{a^2}{b^2}{s^4}{t^4} = 0\]
另一方面,三角形内切圆的半径 \( r = \frac{{2S}}{l} \), 其中\(l\) 是恒定的, 为(见命题6.11.8):
\[l = \frac{{2\sqrt 3 ({a^2} + {b^2} + \sqrt {{a^4} - {a^2}{b^2} + {b^4}} )}}{{\sqrt {{a^2} + {b^2} + 2\sqrt {{a^4} - {a^2}{b^2} + {b^4}} } }}\]
因此我们仅需计算\(S\), 为
\[S = \frac{{t(s + t)(1 - st)}}{{s{{(1 + {t^2})}^2}}}B{C^2} = \frac{{4st(1 - st){{(1 + {s^2} + st + {t^2})}^2}({a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta )}}{{(s + t)(1 + {t^2})(1 + 2{s^2} + {s^4} + {t^2} - 2{s^2}{t^2} + {s^4}{t^2} - 4s{t^3} + 4{s^3}{t^3} + 4{s^2}{t^4})}}\]
消元 \(\theta, t\) 可得关于\(S\)的二次方程:
\[27{a^6}{b^6}{s^2}{(1 + {s^2})^2} + 2{a^2}{b^2}({a^2} + {b^2})s(1 + {s^2})(2{a^4} - 5{a^2}{b^2} + 2{b^4} - 9{a^2}{b^2}{s^2})S - {(a - b)^2}{(a + b)^2}({a^2}{b^2} + 4{a^4}{s^2} + 2{a^2}{b^2}{s^2} + 4{b^4}{s^2} + 9{a^2}{b^2}{s^4}){S^2} = 0\]
注意到方程关于\(s\)的判别式
\[\Delta = 16{a^4}{b^4}({a^4} - {a^2}{b^2} + {b^4}){s^2}{(1 + {s^2})^2}{({a^4} - {a^2}{b^2} + {b^4} + 9{a^2}{b^2}{s^2})^2}\]
仅含非平方因式 \(({a^4} - {a^2}{b^2} + {b^4})\),它是三角形的内切共焦椭圆\(\frac{x^2}{p^2} + \frac{y^2}{q^2}=1\)的半轴表示的根式部分.
\[\left\{ \begin{array}{l}
{a^2} - {b^2} = {p^2} - {q^2} \\
aq + bp = ab \\
\end{array} \right.\]
由此消元 \(q\), 即引入新参量\(p\)使之满足如下关系:
\[{a^4} - 2a{b^2}p - {a^2}{p^2} + {b^2}{p^2} = 0\]
将其与\(S\)的方程联合消元\(b\),可得到:
\[S = \frac{{(a - p)(2a - p){{(a + p)}^2}s(1 + {s^2})}}{{ap - {p^2} + 2{a^2}{s^2} + ap{s^2} - {p^2}{s^2}}}\]
将其与\(s, t\)的方程消元\(b\), 又有:
\[ap - {p^2} + ap{s^2} - {p^2}{s^2} - 2{a^2}st + ap{t^2} - {p^2}{t^2} + 2{a^2}{s^2}{t^2} + ap{s^2}{t^2} - {p^2}{s^2}{t^2} = 0\]
与前面\(\cos{2\theta}\)的表示联合, 即可导出三角形面积\(S\)与\(\theta\)的关系式:
\[S = \frac{{({a^2} + 2ap - 2{p^2} + a(a - 2p)\cos 2\theta )\sqrt {({a^2} - {p^2})({a^4} - 2{a^3}p + 4a{p^3} - 2{p^4} + {a^3}(a - 2p)\cos 2\theta )} }}{{({a^2} - 2ap + 2{p^2} + a(a - 2p)\cos 2\theta )\sqrt {2(2a - p)p} }}\]
其中 \( p = \frac{{a(\sqrt {{a^4} - {a^2}{b^2} + {b^4}} - {b^2})}}{{({a^2} - {b^2})}}\)
|
|