找回密码
 欢迎注册
楼主: mathematica

[提问] 由“陈计的一道代数不等式”所发出的疑问

[复制链接]
发表于 2010-7-3 22:51:55 | 显示全部楼层
那最好能够发出来,和大家共享一下,这里最重要的是大家的共同参与。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-3 23:35:49 | 显示全部楼层
16楼的文章我也看了,mathe发现的分离法很有用。我对该文作了一些简化和图解,如果发出来相信能澄清不少疑问,不过这么做似乎有掠美之嫌。 hujunhua 发表于 2010-7-3 22:07
不会不会! 求图解!
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-4 02:20:51 | 显示全部楼层
边看球边整理的,没有什么数值计算。 ineq.doc (189.5 KB, 下载次数: 29) 比前面几个帖子用了些不同的符号,真是不好意思,不是故意的。

点评

@mathematica 我也下载不了! 我的电脑换了几茬了,所以没有存档文件。你得问@gxqcn想办法。  发表于 2016-7-9 12:54
下载不了你的附件!  发表于 2016-7-8 13:28

评分

参与人数 1威望 +6 鲜花 +6 收起 理由
wayne + 6 + 6 内功深厚!!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-4 02:30:19 | 显示全部楼层
算是对mathe和wayne等人的计算结果的一个方向性解释吧,不能与他们的工作相比的。 我由图解法粗略计算的结果,m(3)/3=2.00286, 与wayne的有点区别,待有空了用解析法精算一下。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-4 17:27:15 | 显示全部楼层
hujunhua的方法挺有意思的,他定义了隐函数$x^2y^2=(x+y)^2+1$,不过我们需要证明这个函数是凸函数才能够有hujunhua的结论。(当然这个函数单调减很容易证明) 另外,在证明函数是凸函数以后,我们可以得出在s的一定范围内,会得到两个不同的极值点(不包含n个数全相等的情况),但是最小值会在哪个极值点(或者全部相等时)还是很难判断。至于是否正好存在唯一一个$s_3$作为两种极值点取到最值的边界也不能确定
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-4 18:35:04 | 显示全部楼层
如果采用直接求二阶导数的方法证明上面隐函数是凸的,计算挺复杂的。不过我发现我们可以有比较取巧的方法。证明函数是凸的,我们只需要在函数上面取两个点$(x_1,y_1),(x_2,y_2)$,然后证明它们的中点在函数上方。也就是已知正数$x_1^2y_1^2=(x_1+y_1)^2+1,x_2^2y_2^2=(x_2+y_2)^2+1$,求证 ${(x_1+x_2)^2(y_1+y_2)^2}/16>={(x_1+x_2+y_1+y_2)^2}/4+1$ 这个我们只要主要到隐函数单调减,可以假设存在正数a,b使得$ax_1+by_1=ax_2+by_2=c$ 于是对于两个点的中点$(x_0={x_1+x_2}/2,y_0={y_1+y_2}/2)$,必然也有$ax_0+by_0=c$ 我们只需要证明函数$x^2y^2$在约束条件$ax+by=c$下的最小值只能在边界上取到就可以了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-4 19:04:10 | 显示全部楼层
我原以为那条切线是临界线,上午抽空算了一下,发现不是,赶紧改掉了。无法显示临界线的特征,使这个图解法的地位大打折扣。 要是早加谨慎,算出切线不是临界线,我都不会发言了。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-5 08:32:38 | 显示全部楼层
16#我的证明凸函数的方法还是不对,不过用上面的方法,利用约束条件可以将y消去,然后证明余下关于x的函数是凹的,还是可以的。 不过虽然临界线不是切线,但是这个图解法还是挺有用的,至少这种方法在给定n后可以比较容易的算出存在多个极值点的范围以及极值点的数目。但是是否存在临界线还需要讨论
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-5 11:46:04 | 显示全部楼层
用图解法时,对图像形态特征的把握,我首先是凭几何画板或者mathematica精确画图,加上少许定性分析,暂时放过严格的分析证明。 追究到底,这是一种数值方法,因为机器精确绘图的实质是点的高精度计算,只不过不用人工编程,计算过程不可见罢了。 几何画板可见的数值精度是5位小数。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2010-7-6 13:04:58 | 显示全部楼层

n=3的临界线

本帖最后由 hujunhua 于 2010-7-6 13:16 编辑 对线段$x+2y=3s(x>0, y>0)$(以下称为约束线)上的点$(x,y),$构造目标函数$f(x,y)=(x+1/x)(y+1/y)^2$. 从前面的结果知道$f(x,y)$的驻点集={约束线与解曲线的交点}。由图像显见,最多只有3个驻点。 在约束线的两端,f(x,y)→+∞,所以如果有3个驻点的话,左驻和右驻都是极小点,中驻为极大点。位于切线与折点之间的约束线与解曲线有3个交点,正是这种情况。 位于切线以下的约束线只有唯一驻点,必是极小点。 位于折点$(s_0, s_0)$之上的约束线也只有一个驻点,必是极小点。 切线上的3个驻点,中驻与右驻重合于切点,必是拐点,所以左驻为极小点。f(左)-f(右)<0 过折点的约束线上的3个驻点,左驻与中驻重合于折点,必是拐点,所以右驻为极小点。f(左)-f(右)>0 在切线与折点之间,f(左)-f(右)是s的连续函数,所以f(左)=f(右)的临界线是存在的,问题是有几条. f(x,y)的曲线在几何画板中可以画出来。图待补充
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2024-11-22 10:14 , Processed in 0.036474 second(s), 18 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表