数学研发论坛

 找回密码
 欢迎注册
楼主: 蓉依山爸

[讨论] 20多年了,我无力解出来的一道高中奥数题!

  [复制链接]
 楼主| 发表于 2014-12-4 18:04:31 | 显示全部楼层
倪举鹏 发表于 2014-7-13 15:50
好了,发现这个最大体积最大表面积问题可以通过软件数值求解了。相信最长棱长也数值求解没有问题。设5个未 ...

坐等各位大牛最后的解答……
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2014-12-7 09:43:17 | 显示全部楼层
蓉依山爸 发表于 2014-12-4 18:04
坐等各位大牛最后的解答……

数值计算验算发现面积最大时候,中间点不是任何的特殊位置
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-9-1 21:08:46 | 显示全部楼层
对55#所提问题,我们有了最终的解答,见:

/forum.php ... 10&fromuid=1455
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2015-10-23 16:19:30 | 显示全部楼层
我是高二学生,想问一下如果a=b=c=d会怎样?

评分

参与人数 1金币 +20 收起 理由
admin + 20 首帖奖励,欢迎常来。

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2016-11-29 11:24:19 | 显示全部楼层
值得鼓励,人生就是这么的执着
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2018-11-28 16:37:03 | 显示全部楼层
本帖最后由 yiherr 于 2018-11-28 17:07 编辑

小奥有一道题(当然初三竞赛也差混搭可有见到的):仅给一正方形对角线长度,问面积?
对拆为2个或4个直角三角形即可,万不可用三角函数求约等于!!!
拿三角函数的硬功底拼杀玩过没玩过七巧板,那是以卵击石!犹自浑然不知!
可想时间几何?精确几何?

你这题是它的变形,先求棱长吧。
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-22 21:47:10 | 显示全部楼层
zeus 发表于 2013-11-24 22:31
当a=5,b=6,c=7,d=8时,要使V最大,应有
AB=9.354504601822144040036543928965253501623835173117051944744 ...

关于最大体积的计算,跟mathe 47# 和zeus49#的计算结果是一致的,但我的计算思路跟大家都不同,
\[AB^2-HB^2=AC^2-HC^2=AD^2-HD^2 =(HA+h_1)^2-h_1^2\]
\[BA^2-HA^2=BC^2-HC^2=BD^2-HD^2=(HB+h_2)^2-h_2^2\]
\[CA^2-HA^2=CB^2-HB^2=CD^2-HD^2=(HC+h_3)^2-h_3^2\]
\[DA^2-HA^2=DB^2-HB^2=DC^2-HC^2=(HD+h_4)^2-h_4^2\]
\[AB^2+CD^2=AC^2+BD^2=AD^2+BD^2\]
然后再结合 已知六个棱长,求体积的公式 https://mathworld.wolfram.com/Cayley-MengerDeterminant.html
设垂心$H$到平面$BCD$的距离是$h_1$,$HA=a$,再接着设$t=a*h_1$,那么需要解一个方程[关于$t$的四次方程,且关于$a,b,c,d$轮换对称]:
\[3 t^4+2(a^2 + b^2 + c^2 + d^2) t^3+(a^2 b^2 + a^2 c^2 + b^2 c^2 + a^2 d^2 + b^2 d^2 + c^2 d^2)t^2-a^2 b^2 c^2 d^2 =0\]
然后体积是$t$的三次多项式轮换对称的表达。
\[ 36V^2 =  4t^3 +3(a^2 + b^2 + c^2 + d^2) t^2+ 2 t (a^2 b^2 + a^2 c^2 + b^2 c^2 + a^2 d^2 +b^2 d^2 + c^2 d^2)+(a^2 b^2 c^2 + a^2 b^2 d^2 + a^2 c^2 d^2 + b^2 c^2 d^2 )\]
跟mathe在47#得到的表达式只有一个符号差别!!!
关于 代数解,我们知道,一元四次方程是有求根公式的,就是比较繁杂而已,在此我就不列出来了。
关于数值求解,那就简单多了,代入$a=5,b=6,c=7,d=8$,解得[对比zeus在49#的计算结果]
$V =\sqrt{\frac{1}{6} \left(1027 \sqrt{3081}+56943\right)} = 137.8093119536560228230010667310836308638826373669972822960332005119050811234491431774630333170672630$
$AB = \sqrt{\sqrt{3081}+32} = 9.354504601822144040036543928965253501623835173117051944744003395641372587052066809984653977696087123$
$AC=\sqrt{\sqrt{3081}+45} = 10.02530579810469769453301398430895245498826727177334991031435993305407866206255749992016300069371697$
$AD=\sqrt{\sqrt{3081}+60} =10.74740695914654892771273168914539197681757882984966087419823011627142041367160658944487863887466625$
$BC=\sqrt{\sqrt{3081}+56} = 10.55967595835741872563062078862062158484873490053794012397878359919158379952169120193028324562435210$
$BD =\sqrt{\sqrt{3081}+71} = 11.24752223138552723314641503456114583391699941750291615702905715870232109953269536447150275363601517$
$CD =\sqrt{\sqrt{3081}+84} = 11.81129782646732135191655137423755362987318240475250424704426877767851061780208349846799753539156030$
$h_1=h_2=h_3=h_4= \frac{1}{10} \left(\sqrt{3081}-29\right) = 2.650675634551166961208907760585577244693832272202073817023055297455465919286778784603829803201806800$

  1. tt = Association[
  2.   Thread[{ab, ac, ad, bc, bd, cd, ha, hb, hc, hd} -> {x, y, z, Z, Y,
  3.      X, a, b, c, d}]]; tt[ba] = tt[ab]; tt[ca] = tt[ac];
  4. tt[da] = tt[ad]; tt[db] = tt[bd]; tt[cb] = tt[bc]; tt[dc] = tt[cd];
  5. Volume4[s_] :=
  6. Det[{{0, 1, 1, 1, 1}, {1, 0, s[[1]]^2, s[[2]]^2, s[[3]]^2}, {1,
  7.     s[[1]]^2, 0, s[[4]]^2, s[[5]]^2}, {1, s[[2]]^2, s[[4]]^2, 0,
  8.     s[[6]]^2}, {1, s[[3]]^2, s[[5]]^2, s[[6]]^2, 0}}]; hh = {h[1],
  9.   h[2], h[3], h[4]};
  10. (*a-bcd,b-acd,c-abd,d-abc*)ans =
  11. Eliminate[{tt[ab]^2 - tt[hb]^2 == tt[ac]^2 - tt[hc]^2 ==
  12.     tt[ad]^2 - tt[hd]^2 == (tt[ha] + hh[[1]])^2 - hh[[1]]^2,
  13.    tt[ba]^2 - tt[ha]^2 == tt[bc]^2 - tt[hc]^2 ==
  14.     tt[bd]^2 - tt[hd]^2 == (tt[hb] + hh[[2]])^2 - hh[[2]]^2,
  15.    tt[ca]^2 - tt[ha]^2 == tt[cb]^2 - tt[hb]^2 ==
  16.     tt[cd]^2 - tt[hd]^2 == (tt[hc] + hh[[3]])^2 - hh[[3]]^2,
  17.    tt[da]^2 - tt[ha]^2 == tt[db]^2 - tt[hb]^2 ==
  18.     tt[dc]^2 - tt[hc]^2 == (tt[hd] + hh[[4]])^2 - hh[[4]]^2,
  19.    tt[ab]^2 + tt[cd]^2 == tt[ac]^2 + tt[bd]^2 == tt[ad]^2 + tt[bc]^2,
  20.    2 hh[[1]]^2 (-Det[{{0, X, Y, Z}, {X, 0, Z, Y}, {Y, Z, 0, X}, {Z, Y,
  21.            X, 0}}]) == Volume4[tt /@ {hb, hc, hd, bc, bd, cd}],
  22.    288 V^2 == Volume4[tt /@ {ab, ac, ad, bc, bd, cd}]}, {x, y, z, X, Y,
  23.    Z, h[2], h[3], h[4]}]
复制代码

说明:该代码得到的方程是 $3 a^2 h_1^4+2 a (a^2+b^2+c^2+d^2) h_1^3+(a^2 b^2+a^2 c^2+b^2 c^2+a^2 d^2+b^2 d^2+c^2 d^2) h_1^2-b^2 c^2 d^2$,然后增设变量$t=a*h_1$能使方程更加的对称。

最终就是
  1. With[{a=5,b=6,c=7,d=8},Solve[36V^2==a^2 b^2 c^2+a^2 b^2 d^2+a^2 c^2 d^2+b^2 c^2 d^2+2 t (a^2 b^2+a^2 c^2+b^2 c^2+a^2 d^2+b^2 d^2+c^2 d^2) +3  (a^2+b^2+c^2+d^2) t^2+4 t^3&&-a^2 b^2 c^2 d^2+(a^2 b^2+a^2 c^2+b^2 c^2+a^2 d^2+b^2 d^2+c^2 d^2) t^2+2  (a^2+b^2+c^2+d^2) t^3+3 t^4==0&&t>0&&V>0]]//RootReduce
复制代码

评分

参与人数 1威望 +1 金币 +1 贡献 +1 经验 +1 鲜花 +1 收起 理由
葡萄糖 + 1 + 1 + 1 + 1 + 1 精彩!

查看全部评分

毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-23 10:34:40 | 显示全部楼层
数学星空 发表于 2013-11-25 19:32
根据47#,mathe得到的结论:设$PA=a,PB=b,PC=c,PD=d$
我们可以准确得到[TeX]DA=x_1,DB=y_1,DC=z_1 ...

然后,继续化简,消元,得到了 数学星空的答案了,完全一致!
如下:
======
\[3 t^4+2(a^2 + b^2 + c^2 + d^2) t^3+(a^2 b^2 + a^2 c^2 + b^2 c^2 + a^2 d^2 + b^2 d^2 + c^2 d^2)t^2-a^2 b^2 c^2 d^2 =0\]
\[ 36V^2 =  4t^3 +3(a^2 + b^2 + c^2 + d^2) t^2+ 2 t (a^2 b^2 + a^2 c^2 + b^2 c^2 + a^2 d^2 +b^2 d^2 + c^2 d^2)+(a^2 b^2 c^2 + a^2 b^2 d^2 + a^2 c^2 d^2 + b^2 c^2 d^2 )\]
=======
设:
\(s_1 = a^2+b^2+c^2+d^2\),
\(s_2 = a^2b^2+a^2c^2+a^2d^2+b^2c^2+b^2d^2+c^2d^2\),
\(s_3 = a^2b^2c^2+a^2b^2d^2+a^2c^2d^2+b^2c^2d^2\),
\(s_4 = a^2b^2c^2d^2\)
\(W = 36V^2 \)
  1. Eliminate[W==4 t^3+3 t^2 Subscript[s, 1]+2 t Subscript[s, 2]+Subscript[s, 3]&&3 t^4+2 t^3 Subscript[s, 1]+t^2 Subscript[s, 2]-Subscript[s, 4]==0,t]
复制代码

$27W^4-2 (2 s_1^3-9 s_2 s_1+54 s_3)W^3+(12 s_3 s_1^3+6 s_4 s_1^2-54 s_2 s_3 s_1+4 s_2^3-s_1^2 s_2^2+162 s_3^2-144 s_2 s_4)W^2+2 (-6 s_3^2 s_1^3+9 s_2 s_4 s_1^3+s_2^2 s_3 s_1^2-6 s_3 s_4 s_1^2+27 s_2 s_3^2 s_1-96 s_4^2 s_1-40 s_2^2 s_4 s_1-54 s_3^3-4 s_2^3 s_3+144 s_2 s_3 s_4)W+27 s_4^2 s_1^4+4 s_3^3 s_1^3-18 s_2 s_3 s_4 s_1^3-144 s_2 s_4^2 s_1^2+4 s_2^3 s_4 s_1^2+6 s_3^2 s_4 s_1^2-18 s_2 s_3^3 s_1+192 s_3 s_4^2 s_1+80 s_2^2 s_3 s_4 s_1+27 s_3^4-256 s_4^3+4 s_2^3 s_3^2-s_1^2 s_2^2 s_3^2+128 s_2^2 s_4^2-16 s_2^4 s_4-144 s_2 s_3^2 s_4=0$
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-23 18:39:52 | 显示全部楼层
本帖最后由 chyanog 于 2020-6-23 20:00 编辑

设垂心四面体的6条棱长分别为$u,v,w,\sqrt{r^2-u^2},\sqrt{r^2-v^2},\sqrt{r^2-w^2}$,4顶点坐标为\(\left((0,0,0),(u,0,0),\left(x_3,y_3,0\right),\left(x_4,y_4,z_4\right)\right)\),算出x3,y3,x4,y4,z4, 得到
\(\left((0,0,0),(u,0,0),\left(\frac{-r^2+u^2+v^2+w^2}{2 u},\frac{\sqrt{2 r^2 \left(u^2+v^2+w^2\right)-r^4+2 u^2 \left(v^2-w^2\right)-u^4-\left(v^2+w^2\right)^2}}{2 u},0\right),\left(\frac{-r^2+u^2+v^2+w^2}{2 u},-\frac{-2 r^2 \left(v^2+w^2\right)+r^4-u^4+\left(v^2+w^2\right)^2}{2 u \sqrt{2 r^2 \left(u^2+v^2+w^2\right)-r^4+2 u^2 \left(v^2-w^2\right)-u^4-\left(v^2+w^2\right)^2}},\frac{\sqrt{-2 r^4 \left(u^2+v^2+w^2\right)+r^2 \left(u^2+v^2+w^2\right)^2+r^6-4 u^2 v^2 w^2}}{\sqrt{-2 r^2 \left(u^2+v^2+w^2\right)+r^4-2 u^2 \left(v^2-w^2\right)+u^4+\left(v^2+w^2\right)^2}}\right)\right)\)
再算出垂心坐标为
\(\left(\frac{-r^2+u^2+v^2+w^2}{2 u},-\frac{-2 r^2 \left(v^2+w^2\right)+r^4-u^4+\left(v^2+w^2\right)^2}{2 u \sqrt{2 r^2 \left(u^2+v^2+w^2\right)-r^4+2 u^2 \left(v^2-w^2\right)-u^4-\left(v^2+w^2\right)^2}},\frac{\left(r^2+u^2-v^2-w^2\right) \left(-r^2+u^2-v^2+w^2\right) \left(-r^2+u^2+v^2+w^2\right)}{2 \sqrt{-2 r^2 \left(u^2+v^2+w^2\right)+r^4-2 u^2 \left(v^2-w^2\right)+u^4+\left(v^2+w^2\right)^2} \sqrt{-2 r^4 \left(u^2+v^2+w^2\right)+r^2 \left(u^2+v^2+w^2\right)^2+r^6-4 u^2 v^2 w^2}}\right)\)
垂心到各顶点的距离已知,分别为a, b, c, d,然后列方程组求解或消元
\(3 T^4+\left(2 a^2+2 b^2+2 c^2+2 d^2\right) T^3+\left(a^2 b^2+a^2 c^2+b^2 c^2+a^2 d^2+b^2 d^2+c^2 d^2\right) T^2-a^2 b^2 c^2 d^2=0\)
\(4 T^3+3 \left(a^2+b^2+c^2+d^2\right) T^2+2 \left(a^2 b^2+a^2 c^2+b^2 c^2+a^2 d^2+b^2 d^2+c^2 d^2\right) T-36 V^2+\left(a^2 b^2 c^2+a^2 b^2 d^2+a^2 c^2 d^2+b^2 c^2 d^2\right)=0\)
结果和wayne的一致。

Mathematica代码
  1. Clear["`*"];
  2. vs={v1,v2,v3,v4}={{0,0,0},{u,0,0},{x3,y3,0},{x4,y4,z4}};
  3. pts=vs/.Solve[
  4. {
  5. (v1-v3).(v1-v3)==v^2,
  6. (v1-v4).(v1-v4)==w^2,
  7. (v2-v3).(v2-v3)==r^2-w^2,
  8. (v2-v4).(v2-v4)==r^2-v^2,
  9. (v3-v4).(v3-v4)==r^2-u^2
  10. },{x3,y3,x4,y4,z4}][[-1]]//Simplify

  11. H=Solve[Rest@RegionMember[InfiniteLine[{#,RegionNearest[InfinitePlane[{##2}],#]}],{x,y,z}]&@@@{pts,RotateRight@pts},{x,y,z}][[1]]//Values

  12. sys=Simplify[(H-#).(H-#)&/@pts]-{a,b,c,d}^2

  13. vol=V^2-Volume[Tetrahedron@pts]^2/.Abs->Identity//Together//Numerator;

  14. tmp=T-((Norm[H-pts[[1]]]RegionDistance[InfinitePlane[pts[[{2,3,4}]]],H])^2/.Abs->Identity//Factor//Sqrt//PowerExpand)//Together//Numerator;

  15. GroebnerBasis[Join[sys,{tmp}],T,{u,v,w,r},MonomialOrder->EliminationOrder]

  16. GroebnerBasis[Join[sys,{vol,tmp}],{V,T},{u,v,w,r},MonomialOrder->EliminationOrder][[1]]

  17. GroebnerBasis[Join[sys,{vol}],V,{u,v,w,r},MonomialOrder->EliminationOrder][[1]]//Collect[#,V,Simplify]&
复制代码


毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
发表于 2020-6-23 19:45:21 | 显示全部楼层
漂亮,又见你玩起了Groebner Basis,学习了
毋因群疑而阻独见  毋任己意而废人言
毋私小惠而伤大体  毋借公论以快私情
您需要登录后才可以回帖 登录 | 欢迎注册

本版积分规则

小黑屋|手机版|数学研发网 ( 苏ICP备07505100号 )

GMT+8, 2020-8-15 22:19 , Processed in 0.075966 second(s), 20 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表