- 注册时间
- 2013-12-9
- 最后登录
- 1970-1-1
- 威望
- 星
- 金币
- 枚
- 贡献
- 分
- 经验
- 点
- 鲜花
- 朵
- 魅力
- 点
- 上传
- 次
- 下载
- 次
- 积分
- 941
- 在线时间
- 小时
|
发表于 2014-6-30 08:37:30
|
显示全部楼层
http://bbs.emath.ac.cn/forum.php ... 12&fromuid=8888
7#的三角形的三个顶点也是要验算的,这样更准确一些!
可以尝试把三角形区域转化成球面区域.
同样是拉格朗日乘子法,转化后只需要一次拉格朗日乘子法就可以了,
但是计算结果多了很多,不过精确解的计算还是可能的.
- Clear["Global`*"];(*Clear all variables*)
- (*把三维空间中的三角形转化成球面a^2+b^2+c^2==1*)
- fun=(2*a^2-b^2)(2*b^2-c^2)(2*c^2-a^2)+x*(a^2+b^2+c^2-1)
- fa=D[fun,a]
- fb=D[fun,b]
- fc=D[fun,c]
- fx=D[fun,x]
- sol1=Solve[{fa==0,fb==0,fc==0,fx==0},{a,b,c,x}]
- Print["显示三角形内部的最值"]
- sol11=fun/.sol1
- Print["数值化"]
- N@sol1
- N@sol11
复制代码
运算结果有些长,但是也算把问题解决了!
Out[12]= (2 a^2 - b^2) (2 b^2 - c^2) (-a^2 + 2 c^2) + (-1 + a^2 +
b^2 + c^2) x
Out[13]= -2 a (2 a^2 - b^2) (2 b^2 - c^2) +
4 a (2 b^2 - c^2) (-a^2 + 2 c^2) + 2 a x
Out[14]= 4 b (2 a^2 - b^2) (-a^2 + 2 c^2) -
2 b (2 b^2 - c^2) (-a^2 + 2 c^2) + 2 b x
Out[15]= 4 (2 a^2 - b^2) c (2 b^2 - c^2) -
2 (2 a^2 - b^2) c (-a^2 + 2 c^2) + 2 c x
Out[16]= -1 + a^2 + b^2 + c^2
Out[17]= {{x -> -(1/9), b -> -(1/Sqrt[3]), c -> -(1/Sqrt[3]),
a -> -(1/Sqrt[3])}, {x -> -(1/9), b -> -(1/Sqrt[3]),
c -> -(1/Sqrt[3]), a -> 1/Sqrt[3]}, {x -> -(1/9), b -> -(1/Sqrt[3]),
c -> 1/Sqrt[3], a -> -(1/Sqrt[3])}, {x -> -(1/9),
b -> -(1/Sqrt[3]), c -> 1/Sqrt[3], a -> 1/Sqrt[3]}, {x -> -(1/9),
b -> 1/Sqrt[3], c -> -(1/Sqrt[3]), a -> -(1/Sqrt[3])}, {x -> -(1/9),
b -> 1/Sqrt[3], c -> -(1/Sqrt[3]), a -> 1/Sqrt[3]}, {x -> -(1/9),
b -> 1/Sqrt[3], c -> 1/Sqrt[3], a -> -(1/Sqrt[3])}, {x -> -(1/9),
b -> 1/Sqrt[3], c -> 1/Sqrt[3], a -> 1/Sqrt[3]}, {x -> 0, a -> -1,
c -> 0, b -> 0}, {x -> 0, a -> 1, c -> 0, b -> 0}, {x -> 0, b -> -1,
c -> 0, a -> 0}, {x -> 0, b -> 1, c -> 0, a -> 0}, {x -> 0,
b -> -Sqrt[(2/7)], c -> -(2/Sqrt[7]), a -> -(1/Sqrt[7])}, {x -> 0,
b -> -Sqrt[(2/7)], c -> -(2/Sqrt[7]), a -> 1/Sqrt[7]}, {x -> 0,
b -> -Sqrt[(2/7)], c -> 2/Sqrt[7], a -> -(1/Sqrt[7])}, {x -> 0,
b -> -Sqrt[(2/7)], c -> 2/Sqrt[7], a -> 1/Sqrt[7]}, {x -> 0,
b -> Sqrt[2/7], c -> -(2/Sqrt[7]), a -> -(1/Sqrt[7])}, {x -> 0,
b -> Sqrt[2/7], c -> -(2/Sqrt[7]), a -> 1/Sqrt[7]}, {x -> 0,
b -> Sqrt[2/7], c -> 2/Sqrt[7], a -> -(1/Sqrt[7])}, {x -> 0,
b -> Sqrt[2/7], c -> 2/Sqrt[7], a -> 1/Sqrt[7]}, {x -> 0,
b -> -(2/Sqrt[7]), c -> -(1/Sqrt[7]), a -> -Sqrt[(2/7)]}, {x -> 0,
b -> -(2/Sqrt[7]), c -> -(1/Sqrt[7]), a -> Sqrt[2/7]}, {x -> 0,
b -> -(2/Sqrt[7]), c -> 1/Sqrt[7], a -> -Sqrt[(2/7)]}, {x -> 0,
b -> -(2/Sqrt[7]), c -> 1/Sqrt[7], a -> Sqrt[2/7]}, {x -> 0,
b -> -(1/Sqrt[7]), c -> -Sqrt[(2/7)], a -> -(2/Sqrt[7])}, {x -> 0,
b -> -(1/Sqrt[7]), c -> -Sqrt[(2/7)], a -> 2/Sqrt[7]}, {x -> 0,
b -> -(1/Sqrt[7]), c -> Sqrt[2/7], a -> -(2/Sqrt[7])}, {x -> 0,
b -> -(1/Sqrt[7]), c -> Sqrt[2/7], a -> 2/Sqrt[7]}, {x -> 0,
b -> 1/Sqrt[7], c -> -Sqrt[(2/7)], a -> -(2/Sqrt[7])}, {x -> 0,
b -> 1/Sqrt[7], c -> -Sqrt[(2/7)], a -> 2/Sqrt[7]}, {x -> 0,
b -> 1/Sqrt[7], c -> Sqrt[2/7], a -> -(2/Sqrt[7])}, {x -> 0,
b -> 1/Sqrt[7], c -> Sqrt[2/7], a -> 2/Sqrt[7]}, {x -> 0,
b -> 2/Sqrt[7], c -> -(1/Sqrt[7]), a -> -Sqrt[(2/7)]}, {x -> 0,
b -> 2/Sqrt[7], c -> -(1/Sqrt[7]), a -> Sqrt[2/7]}, {x -> 0,
b -> 2/Sqrt[7], c -> 1/Sqrt[7], a -> -Sqrt[(2/7)]}, {x -> 0,
b -> 2/Sqrt[7], c -> 1/Sqrt[7], a -> Sqrt[2/7]}, {x -> 0, c -> -1,
a -> 0, b -> 0}, {x -> 0, c -> 1, a -> 0,
b -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), a -> -(1/3) Sqrt[5 + Sqrt[7]],
c -> -(1/3) Sqrt[4 - Sqrt[7]],
b -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), a -> -(1/3) Sqrt[5 + Sqrt[7]],
c -> Sqrt[4 - Sqrt[7]]/3, b -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]),
a -> Sqrt[5 + Sqrt[7]]/3, c -> -(1/3) Sqrt[4 - Sqrt[7]],
b -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), a -> Sqrt[5 + Sqrt[7]]/3,
c -> Sqrt[4 - Sqrt[7]]/3, b -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]),
b -> -(1/3) Sqrt[4 - Sqrt[7]], c -> -Sqrt[5/9 + Sqrt[7]/9],
a -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), b -> -(1/3) Sqrt[4 - Sqrt[7]],
c -> Sqrt[5/9 + Sqrt[7]/9], a -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]),
b -> Sqrt[4 - Sqrt[7]]/3, c -> -Sqrt[5/9 + Sqrt[7]/9],
a -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), b -> Sqrt[4 - Sqrt[7]]/3,
c -> Sqrt[5/9 + Sqrt[7]/9], a -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]),
b -> -(1/3) Sqrt[5 + Sqrt[7]], a -> -(1/3) Sqrt[4 - Sqrt[7]],
c -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), b -> -(1/3) Sqrt[5 + Sqrt[7]],
a -> Sqrt[4 - Sqrt[7]]/3, c -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]),
b -> Sqrt[5 + Sqrt[7]]/3, a -> -(1/3) Sqrt[4 - Sqrt[7]],
c -> 0}, {x -> 4/81 (10 - 7 Sqrt[7]), b -> Sqrt[5 + Sqrt[7]]/3,
a -> Sqrt[4 - Sqrt[7]]/3, c -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]),
a -> -(1/3) Sqrt[5 - Sqrt[7]], c -> -Sqrt[4/9 + Sqrt[7]/9],
b -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]), a -> -(1/3) Sqrt[5 - Sqrt[7]],
c -> Sqrt[4/9 + Sqrt[7]/9], b -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]),
a -> Sqrt[5 - Sqrt[7]]/3, c -> -Sqrt[4/9 + Sqrt[7]/9],
b -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]), a -> Sqrt[5 - Sqrt[7]]/3,
c -> Sqrt[4/9 + Sqrt[7]/9], b -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]),
b -> -(1/3) Sqrt[5 - Sqrt[7]], a -> -Sqrt[4/9 + Sqrt[7]/9], c -> 0},
{x -> 4/81 (10 + 7 Sqrt[7]), b -> -(1/3) Sqrt[5 - Sqrt[7]],
a -> Sqrt[4/9 + Sqrt[7]/9], c -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]),
b -> Sqrt[5 - Sqrt[7]]/3, a -> -Sqrt[4/9 + Sqrt[7]/9],
c -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]), b -> Sqrt[5 - Sqrt[7]]/3,
a -> Sqrt[4/9 + Sqrt[7]/9], c -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]),
b -> -(1/3) Sqrt[4 + Sqrt[7]], c -> -(1/3) Sqrt[5 - Sqrt[7]],
a -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]), b -> -(1/3) Sqrt[4 + Sqrt[7]],
c -> Sqrt[5 - Sqrt[7]]/3, a -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]),
b -> Sqrt[4 + Sqrt[7]]/3, c -> -(1/3) Sqrt[5 - Sqrt[7]],
a -> 0}, {x -> 4/81 (10 + 7 Sqrt[7]), b -> Sqrt[4 + Sqrt[7]]/3,
c -> Sqrt[5 - Sqrt[7]]/3, a -> 0}}
During evaluation of In[12]:= 显示三角形内部的最值
Out[19]= {1/27, 1/27, 1/27, 1/27, 1/27, 1/27, 1/27, 1/27, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 2/
81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
4/81 (10 - 7 Sqrt[7]) (-(4/9) + Sqrt[7]/9 + 1/9 (4 - Sqrt[7])) +
2/9 (5/9 + Sqrt[7]/9) (-4 + Sqrt[7]) (-(5/9) - Sqrt[7]/9 +
2/9 (4 - Sqrt[7])),
4/81 (10 - 7 Sqrt[7]) (-(4/9) + Sqrt[7]/9 + 1/9 (4 - Sqrt[7])) +
2/9 (5/9 + Sqrt[7]/9) (-4 + Sqrt[7]) (-(5/9) - Sqrt[7]/9 +
2/9 (4 - Sqrt[7])),
4/81 (10 - 7 Sqrt[7]) (-(4/9) + Sqrt[7]/9 + 1/9 (4 - Sqrt[7])) +
2/9 (5/9 + Sqrt[7]/9) (-4 + Sqrt[7]) (-(5/9) - Sqrt[7]/9 +
2/9 (4 - Sqrt[7])),
4/81 (10 - 7 Sqrt[7]) (-(4/9) + Sqrt[7]/9 + 1/9 (4 - Sqrt[7])) +
2/9 (5/9 + Sqrt[7]/9) (-4 + Sqrt[7]) (-(5/9) - Sqrt[7]/9 +
2/9 (4 - Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
2/81 (-4 + Sqrt[7]) (5 + Sqrt[7]) (1/9 (-5 - Sqrt[7]) +
2/9 (4 - Sqrt[7])) +
4/81 (10 - 7 Sqrt[7]) (-1 + 1/9 (4 - Sqrt[7]) + 1/9 (5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-(5/9) + Sqrt[7]/9 + 1/9 (5 - Sqrt[7])) +
2/9 (5 - Sqrt[7]) (-(4/9) - Sqrt[7]/9) (2 (4/9 + Sqrt[7]/9) +
1/9 (-5 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-1 + 1/9 (5 - Sqrt[7]) + 1/9 (4 + Sqrt[7])) +
2/81 (-4 - Sqrt[7]) (5 - Sqrt[7]) (1/9 (-5 + Sqrt[7]) +
2/9 (4 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-1 + 1/9 (5 - Sqrt[7]) + 1/9 (4 + Sqrt[7])) +
2/81 (-4 - Sqrt[7]) (5 - Sqrt[7]) (1/9 (-5 + Sqrt[7]) +
2/9 (4 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-1 + 1/9 (5 - Sqrt[7]) + 1/9 (4 + Sqrt[7])) +
2/81 (-4 - Sqrt[7]) (5 - Sqrt[7]) (1/9 (-5 + Sqrt[7]) +
2/9 (4 + Sqrt[7])),
4/81 (10 + 7 Sqrt[7]) (-1 + 1/9 (5 - Sqrt[7]) + 1/9 (4 + Sqrt[7])) +
2/81 (-4 - Sqrt[7]) (5 - Sqrt[7]) (1/9 (-5 + Sqrt[7]) +
2/9 (4 + Sqrt[7]))}
During evaluation of In[12]:= 数值化
Out[21]= {{x -> -0.111111, b -> -0.57735, c -> -0.57735,
a -> -0.57735}, {x -> -0.111111, b -> -0.57735, c -> -0.57735,
a -> 0.57735}, {x -> -0.111111, b -> -0.57735, c -> 0.57735,
a -> -0.57735}, {x -> -0.111111, b -> -0.57735, c -> 0.57735,
a -> 0.57735}, {x -> -0.111111, b -> 0.57735, c -> -0.57735,
a -> -0.57735}, {x -> -0.111111, b -> 0.57735, c -> -0.57735,
a -> 0.57735}, {x -> -0.111111, b -> 0.57735, c -> 0.57735,
a -> -0.57735}, {x -> -0.111111, b -> 0.57735, c -> 0.57735,
a -> 0.57735}, {x -> 0., a -> -1., c -> 0., b -> 0.}, {x -> 0.,
a -> 1., c -> 0., b -> 0.}, {x -> 0., b -> -1., c -> 0.,
a -> 0.}, {x -> 0., b -> 1., c -> 0., a -> 0.}, {x -> 0.,
b -> -0.534522, c -> -0.755929, a -> -0.377964}, {x -> 0.,
b -> -0.534522, c -> -0.755929, a -> 0.377964}, {x -> 0.,
b -> -0.534522, c -> 0.755929, a -> -0.377964}, {x -> 0.,
b -> -0.534522, c -> 0.755929, a -> 0.377964}, {x -> 0.,
b -> 0.534522, c -> -0.755929, a -> -0.377964}, {x -> 0.,
b -> 0.534522, c -> -0.755929, a -> 0.377964}, {x -> 0.,
b -> 0.534522, c -> 0.755929, a -> -0.377964}, {x -> 0.,
b -> 0.534522, c -> 0.755929, a -> 0.377964}, {x -> 0.,
b -> -0.755929, c -> -0.377964, a -> -0.534522}, {x -> 0.,
b -> -0.755929, c -> -0.377964, a -> 0.534522}, {x -> 0.,
b -> -0.755929, c -> 0.377964, a -> -0.534522}, {x -> 0.,
b -> -0.755929, c -> 0.377964, a -> 0.534522}, {x -> 0.,
b -> -0.377964, c -> -0.534522, a -> -0.755929}, {x -> 0.,
b -> -0.377964, c -> -0.534522, a -> 0.755929}, {x -> 0.,
b -> -0.377964, c -> 0.534522, a -> -0.755929}, {x -> 0.,
b -> -0.377964, c -> 0.534522, a -> 0.755929}, {x -> 0.,
b -> 0.377964, c -> -0.534522, a -> -0.755929}, {x -> 0.,
b -> 0.377964, c -> -0.534522, a -> 0.755929}, {x -> 0.,
b -> 0.377964, c -> 0.534522, a -> -0.755929}, {x -> 0.,
b -> 0.377964, c -> 0.534522, a -> 0.755929}, {x -> 0.,
b -> 0.755929, c -> -0.377964, a -> -0.534522}, {x -> 0.,
b -> 0.755929, c -> -0.377964, a -> 0.534522}, {x -> 0.,
b -> 0.755929, c -> 0.377964, a -> -0.534522}, {x -> 0.,
b -> 0.755929, c -> 0.377964, a -> 0.534522}, {x -> 0., c -> -1.,
a -> 0., b -> 0.}, {x -> 0., c -> 1., a -> 0.,
b -> 0.}, {x -> -0.420754, a -> -0.921698, c -> -0.387907,
b -> 0.}, {x -> -0.420754, a -> -0.921698, c -> 0.387907,
b -> 0.}, {x -> -0.420754, a -> 0.921698, c -> -0.387907,
b -> 0.}, {x -> -0.420754, a -> 0.921698, c -> 0.387907,
b -> 0.}, {x -> -0.420754, b -> -0.387907, c -> -0.921698,
a -> 0.}, {x -> -0.420754, b -> -0.387907, c -> 0.921698,
a -> 0.}, {x -> -0.420754, b -> 0.387907, c -> -0.921698,
a -> 0.}, {x -> -0.420754, b -> 0.387907, c -> 0.921698,
a -> 0.}, {x -> -0.420754, b -> -0.921698, a -> -0.387907,
c -> 0.}, {x -> -0.420754, b -> -0.921698, a -> 0.387907,
c -> 0.}, {x -> -0.420754, b -> 0.921698, a -> -0.387907,
c -> 0.}, {x -> -0.420754, b -> 0.921698, a -> 0.387907,
c -> 0.}, {x -> 1.40841, a -> -0.511452, c -> -0.859312,
b -> 0.}, {x -> 1.40841, a -> -0.511452, c -> 0.859312,
b -> 0.}, {x -> 1.40841, a -> 0.511452, c -> -0.859312,
b -> 0.}, {x -> 1.40841, a -> 0.511452, c -> 0.859312,
b -> 0.}, {x -> 1.40841, b -> -0.511452, a -> -0.859312,
c -> 0.}, {x -> 1.40841, b -> -0.511452, a -> 0.859312,
c -> 0.}, {x -> 1.40841, b -> 0.511452, a -> -0.859312,
c -> 0.}, {x -> 1.40841, b -> 0.511452, a -> 0.859312,
c -> 0.}, {x -> 1.40841, b -> -0.859312, c -> -0.511452,
a -> 0.}, {x -> 1.40841, b -> -0.859312, c -> 0.511452,
a -> 0.}, {x -> 1.40841, b -> 0.859312, c -> -0.511452,
a -> 0.}, {x -> 1.40841, b -> 0.859312, c -> 0.511452, a -> 0.}}
Out[22]= {0.037037, 0.037037, 0.037037, 0.037037, 0.037037, 0.037037, \
0.037037, 0.037037, 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., \
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., \
0., 0.140251, 0.140251, 0.140251, 0.140251, 0.140251, 0.140251, \
0.140251, 0.140251, 0.140251, 0.140251, 0.140251, 0.140251, \
-0.469469, -0.469469, -0.469469, -0.469469, -0.469469, -0.469469, \
-0.469469, -0.469469, -0.469469, -0.469469, -0.469469, -0.469469}
|
评分
-
参与人数 1 | 威望 +2 |
金币 +2 |
贡献 +2 |
经验 +2 |
鲜花 +2 |
收起
理由
|
kastin
| + 2 |
+ 2 |
+ 2 |
+ 2 |
+ 2 |
不错 |
查看全部评分
|